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1 INTRODUCTION

The finite element method (FEM), is a numerical method for solving partial differential
equations that arise in engineering and mathematical physics. Typical problem areas of
interest include structural analysis, heat transfer, fluid flow, mass transport, and electro-
magnetic potential. The analytical solution of these problems generally require the solution
to boundary value problems for partial differential equations. The finite element method
formulation of the problem results in a system of algebraic equations. The method yields
approximate values of the unknowns at discrete number of points over the domain. To solve
the problem, it subdivides a large system into smaller, simpler parts that are called finite
elements. The simple equations that model these finite elements are then assembled into a
larger system of equations that models the entire problem. FEM then uses variational meth-
ods from the calculus of variations to approximate a solution by minimizing an associated
error function. Studying or analyzing a phenomenon with FEM is often referred to as finite
element analysis (FEA). It is our intention that the lecture note is self-contained as much as
possible and discusses the most of basic theory and implementation. In Appendix we discuss
the sumplemental material and the algorithmic aspects.

We first formulate FEA for the one dimensional equations and motivate various aspects of
FEA, i.e., weak form, stability and variational formulation (Euler-Lagrange). The function
spaces and the theoretical foundation of FEM is then developed, i.e., Distributions, Weak
derivatives, Sobolev spaces, Lax-Milgram and Babusika-Necas-Banach theory for the well-
posedness of the weak form of equations.. Specifically, the mixed finite element formulation
allows to use discontinuous basis elements and is demonstrated by concrete examples. The
basis functions and the assembling of finite event system based on the iso-parametric method
are discussed. The error estimate for FEM is analyzed, i.e., including Cea, Aubin-Nitche
lemmas. Various applications of FEM is introduced for parabolic, hyperbolic and the related
equations. A specific attention is given to the discontinuous Galerkin method.

1.1 What is the finite element method

The following is the major ingredients of the finite element method.

• The solution u is represented by

u(x) =
N∑
k=1

uk φ
N
k (x),

where {φNk (x)} is TRIAL BASIS (it is a generic expression, i.e., we need to specify the
basis for a given example).

• The differential Equation whose unknowns are functions, is tested against TEST func-
tion Basis {ψNk (x)}. i.e. Weak form

(E(x, u, u′, u′′), ψNk ) = 0 for all 1 ≤ k ≤ N.
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Moreover, one can relax is the smoothness requirement on u and {φnk} by the integration by
parts (Green) formula as will be shown.

Example (Two point Boundary value problem)

−(a(x)u′)′ = f(x) with u(0) = 0, u(1) = 0. (1.1)

where the conductivity a(x) > 0. Let xk = k
N

be the k-th node on [0, 1].

uN(x) = the piecewise linear function⇔ φNk (x) = BN
k (x) = hat functions,

where

BN
k (x) =


1−N |x− xk| on |x− xk| ≤ h = 1

N

0 otherwise

Note that uN(xk) = uk, 0 ≤ k ≤ N and u0 = uN = 0.

Figure 1: Hat function

WEAK FORMULATION Let L2(0, 1) be the space of square integrable functions. For
all test function ψ ∈ H1

0 (0, 1) = {ψ ∈ L2(0, 1) : ψ′ ∈ L2(0, 1), ψ(0) = ψ(1) = 0},∫ 1

0

−(a(x)u′)′ψ dx =

∫ 1

0

a(x)u′ψ′ dx =

∫
f(x)ψ(x) dx. (1.2)

is the weak formulation of the differential form (1.1).
For example, a(x) = 1 and ψ = BN

k (x) we have∫ 1

0

u′ψ′ dx = N(

∫ xk

xk−1

u′ dx+

∫ xk+1

xk

u′ dx = −N(u(xk+1)−2u(xk)+u(xk−1)) =

∫ 1

0

f(x)ψ(x) dx.

That is the central difference approximation

−uk+1 − 2uk + uk−1

h2
= N

∫ xk+1

xk−1

f(x)BN
k (x) dx.
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is EXACT if we let uk = u(xk) and evaluate

fk =

∫ xk+1

xk−1

f(x)BN
k (x)(x) dx.

Piecewise Linear Finite element method (Galerkin method) The standard Galerkin method

φNk (x) = ψNk (x) reduces to the Galerkin system of equations for {uNk }, 1 ≤ k ≤ N − 1:∫ 1

0

a(x)(
∑

ukB
N
k (x)′)BN

j (x)′ dx =

∫ 1

0

f(x)BN
k (x) dx, (1.3)

i.e.,
HuN = fN

where the stiffness matrix H ∈ R(N−1)×(N−1) tridiagonal and given by

Hk,j =

∫ 1

0

a(x)BN
k (x)′BN

j (x)′ dx = N


ak + ak−1 k = j
−aj j = k ± 1
0 otherwise

(1.4)

where ak =
∫ xk+1

xk
a(x) dx, and the right hand side is approximate by

fNk =

∫ xk+1

xk−1

f(x) dx ∼ 1

N
f(xk) (1.5)

That is, for h = 1/N

−
ak

uk+1−uk
h
− ak−1

uk−uk−1

h

h
= fk

which is equivalent to the central difference approximation of −(au′)′ = f .

In general, the finite element method is characterized by the following process.

• One chooses a grid for domain Ω where the unknown u is defined In the preceding
treatment, the grid consisted of triangles, but one can also use squares or curvilinear
polygons.

• Then, one chooses basis functions. In our discussion, we used piecewise linear basis
functions, but it is also common to use piecewise polynomial basis functions.

1.2 Where is it from?

Consider the variational problem

min J(u) =

∫ 1

0

1

2
a(x)|u′(x)|2 − f(x)u(x) dx

over u ∈ H1
0 (0, 1) = {u ∈ L2(0, 1) : u ∈ L2(0, 1), u(0) = u(1) = 0}, where

L2(0, 1) = the space of square integrable functions on (0, 1).
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The necessary optimality condition ( equation J ′(u) = 0) is given by∫ 1

0

a(x)u′ψ′ dx =

∫
f(x)ψ(x) dx.

for all ψ ∈ H1
0 (0, 1) = {ψ′ ∈ L2(0, 1), ψ(0) = ψ(1) = 0}. In fact,

J(u+ t ψ)− J(u) =

∫ 1

0

t(a(s)u′(x)ψ′(x)− f(x)ψ(x)) dx+
t2

2

∫ 1

0

a(x)|ψ′|2 dx

lim
t→0

J(u+ t ψ)− J(u)

t
= (J ′(u), ψ) =

∫ 1

0

t(a(s)u′(x)ψ′(x)− f(x)ψ(x)) dx = 0

which is the weak form (1.2). Since

(J ′(u), ψ) =

∫ 1

0

(−(a(x)u′(x))′ − f(x))ψ(x) dx = 0 for all ψ ∈ H1
0 (0, 1).

Thus, we obtain the strong (differential) form (1.1).

−(a(x)u′(x))′ − f(x) = 0 with u(0) = 0, u(1) = 0.

1.3 Ritz method

Consider the Ritz method:

min J(u) subject to u =
N∑
k=1

ukφ
N
k (x).

Then, we have
∂J

∂uk
= (J ′(u), φNk ) = 0

which is equivalent to Galerkin system (1.3). That is, the the Ritz method is equivalent to
the Galerkin method.

1.4 Examples

Consider the minimization

min J(u) =

∫ 1

0

1

2
(a(x)|u′(x)|2 + c(x)|u(x)|2)− f(x)u(x) dx

over all u ∈ H1(0, 1) = {u ∈ L2(0, 1) : u′ ∈ L2(0, 1)}. Then the minimizer u ∈ H1(0, 1)
satisfies ∫ 1

0

(a(x)u′(x)ψ′(x) + c(x)u(x)ψ(x)− f(x)) dx = 0
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for all ψ ∈ H1(0, 1). Since∫ 1

0

a(x)u′(s)ψ′(x) dx = a(x)u′(x)ψ(x)|x=1
x=0 −

∫ 1

0

(a(x)u′)′ψ(x) dx,

we have ∫ 1

0

(−(a(x)u′(x))′ + c(x)u(x)− f(x))ψ(x) dx+ a(x)u′(x)ψ(x)|x=1
x=0 = 0.

Thus,
−(a(x)u′(x))′(x) + c(x)u(x)− f(x) = 0

with a(1)u′(1) = 0 and a(0)u′(0) = 0.
Next, consider the minimization

min J(u) =

∫ 1

0

1

2
(a(x)|u′(x)|2 + c(x)|u(x)|2)− f(x)u(x) dx+

α

2
|u(0)|2

over u ∈ H1
R(0, 1) = {u′ ∈ L2(0, 1) : u(1) = 0}. Then the minimizer u ∈ H1

R(0, 1) satisfies∫ 1

0

(a(x)u′(x)ψ′(x) + c(x)u(x)ψ(x)− f(x)) dx+ αu(0)ψ(0) = 0

for all ψ ∈ H !
R(0, 1). Since∫ 1

0

a(x)u′(x)ψ′(x) dx = a(x)u′(x)ψ(x)|x=1
x=0 −

∫ 1

0

(a(x)u′)′ψ(x) dx

we have∫ 1

0

(−(a(x)u′(x))′(x) + c(x)u(x)− f(x))ψ(x) dx+ (−a(0)u′(0) + αu(0))ψ(0) = 0.

First, for all ψ ∈ H1
0 (0, 1)∫ 1

0

(−(a(x)u′(x))′ + c(x)u(x)− f(x))ψ(x) dx = 0

Since H1
0 (0, 1) is dense in L2(0, 1), i.e., for given u ∈ L2(0, 1) there exits a sequence in

un ∈ H1
0 (0, 1) such that

∫ 1

0
|un(x)− u(x)|2 dx→ 0 as n→∞. we have

−(a(x)u′(x))′ + c(x)u(x)− f(x) = 0

Next, by selecting ψ(0) arbitrary we have

−a(0)u′(0) + αu(0) = 0 and u(1) = 0.

Exercise 1 In general, consider the minimization

min J(u) =

∫ 1

0

1

2
(a(x)|u′(x)|2+c(x)|u(x)|2)−f(x)u(x) dx+

α

2
|u(0)|2−u(0)f1+

β

2
|u(1)|2−u(1)f2
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over all u ∈ H1(0, 1) = {u′ ∈ L2(0, 1). Show that the minimizer u ∈ H1(0, 1) satisfies∫ 1

0

(a(x)u′(x)ψ′(x) + c(x)u(x)ψ(x)− f(x)) dx+ (αu(0)− f1)ψ(0) + (β u(1)− f2)ψ(1) = 0.

for all ψ ∈ H1(0, 1). The differential (strong) form is given by

−(a(x)u′(x))′ + c(x)u(x)− f(x) = 0

with −a(0)u′(0) + αu(0) = f1 and a(1)u′(1) + β u(1) = f2.
Thus, Galerkin system is given by

uN(x) =
N∑
k=0

uk B
N
k (x)

and HuN = fN with uN , fN ∈ RN+1. H ∈ R(N+1)×(N+1) is given by

Hjk =
∫ xk+1

xk−1
(a(x)BN

k (x)′BN
j (x)′ dx+ c(x)BN

k (x)BN
j (x)) dx

H00 =
∫ x1

0
(a(x)BN

0 (x)′BN
0 (x)′ dx+ c(x)BN

0 (x)BN
0 (x)) dx+ α

HNN =
∫ 1

XN−1
(a(x)BN

N (x)′BN
N (x)′ dx+ c(x)BN

N (x)BN
N (x)) dx+ β

and fN ∈ RN+1 is given by

fNk =
∫ xk+1

xk−1
f(x)BN

k (x) dx

fN0 =
∫ x1

0
f(x)BN

0 (x) dx+ f1

fNN =
∫ 1

xN−1
f(x)BN

N (x) dx+ f2.

Remark: One can approximate∫ 1

0

c(x)BN
k (x)BN

j (x)) dx ∼ c(xk)

N
δk,j for 0 < k, j < N

without loosing accuracy. Or on can use the Gauss quadrature rule (wi, ξi), 1 ≤ i ≤ m:

Gauss Quadrature rule:∫ xk−1

xk

F (x) dx ∼ xk − xk−1

2

m∑
i=1

wiF (xk−1 +
xk − xk−1

2
(ξi + 1))

which is exact if F is a polynomial of degree less than 2m− 1. For example

m = 1, ξ1 = 0, w1 = 2

m = 2, ξ1 = − 1√
3
, ξ2 = 1√

3
, w1 = w2 = 1

m = 3; ξ1 = −
√

3
5
, ξ2 = 0, ξ3 =

√
3
5
, w1 = w3 = 5

9
, w2 = 8

9
.
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Exercise 2 (Discontinuos a(x))

a(x) = 1 on [0,
1

2
) and 10 on (

1

2
, 1].

Show that a(x)u′ is continuous since (au′)′ ∈ L2(0, 1) and thus [a(x)u′] = 0 at x = 1
2

and
u′(x) is discontinuous at x = 1

2
. Or, since

−
∫ 1

0

(a(x)u′)′ψ dx = ((au′)((
1

2
)+)− (au′)((

1

2
)−))ψ(

1

2
) +

∫ 1

0

a(x)u′ψ′ for ψ ∈ H1
0 (0, 1),

we have (au′)((1
2
)+) = (au′)((1

2
)−).
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Matlab code with N = 50

d=[2*ones(24,1);11;20*ones(24,1)]; dd=[ones(24,1); 10*ones(24,1)];

h=spdiags(-dd,-1,49,49);h=h+h’+spdiags(d,0,49,49); h=50^2*h; u=h\ones(49,1);

plot(u)

Figure 2: Numerical Example 1

Exercise 3 Consider the nonlinear case

min J(u) =

∫ !

0

Ψ(x, u(x), u′(x)) subject to u(0) = 0, (1.6)

where p = u′ defines the momentum (strain) of u. For example

Ψ(x, u, p) = (
1

q
|p|q +

c(x)

4
(u(x)2 − 1)2 − f(x)u(x)) dx (1.7)

Then,

(J ′(u), ψ) = lim
t→0

J(u+ t ψ)− J(u)

t
=

∫ 1

0

(Ψp(x, u, u
′)ψ′(x) + Ψu(x, u, u

′)ψ(x)− f(x)ψ(x)) dx

where

Ψp =
∂

∂p
Ψ and Ψu =

∂

∂u
Ψ

are the partial derivatives of the function (x, u, p) → Ψ(x, u, p) ∈ R. Thus, a minimizer of
(1.6) satisfies

(J ′(u∗), ψ) = 0 for all ψ ∈ C1(0, 1) satisfying ψ(0) = 0

The strong form is given by

−(Ψp(x, u, u
′))′ + Ψu(x, u, u

′) = 0
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with
u(0) = 0, Ψp(1, u(1), u′(1)) = 0.

For the example (1.7), we have

Ψp = |p|q−2p, Ψu = c(x)u(u2 − 1)− f(x)u

and
−(|u′(x)|q−2u′)′ + c(x)u(u2 − 1)− f(x) = 0, u(0) = 0 and u′(1) = 0

The finite element method based on the linear element is given by

−
Ψp(xk+ 1

2
, uk+1−uk

h
)−Ψp(xk− 1

2
, uk−uk−1

h
)

h
+ Ψu(xk, uk) = 0.

where we used the midpoint rule∫ xk+!

xk−1

F (x)BN
k (x) dx ∼ 1

N
F (xk).

1.5 4th order equation (Beam equation)

Consider the 4th order equation

u′′′′ + c(x)u = f(x)

with various boundary conditions. Let us start with

u(0) = u′(0) = 0, u(1) = u′(1) = 0

Since ∫ 1

0

u′′′′ψ dx = (u′′′ψ − u′′ψ′)|x=1
x=0 +

∫ 1

0

u′′ψ′′ dx. (1.8)

The weak form is given by∫ 1

0

(u′′(x)ψ′′(x) + c(x)u(x)− fψ) dx = 0

for all ψ ∈ H2
0 (0, 1) = {u ∈ L2(0, 1) : u, u′ ∈ L2(0, 1), u(0) = u′(0) = 0, u(1) = u′(1) = 0}.

The corresponding variational problem is

min J(u) =

∫ 1

0

1

2
(|u′′(x)|2 + c(x)u(x)|2)− f(x)u(x) dx

over u ∈ H2
0 (0, 1).

Exercise 4 Consider the general case

u′′′(0) + αu(0) = f1, −u′′(0) + β u′(0) = f2, u(1) = u′(1) = 0
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The weak form is given by∫ 1

0

(u′′(x)ψ′′(x) + c(x)u(x)− fψ) dx+ (αu(0)− f1)ψ(0) + (βu′(0)− f2)ψ′(0) = 0

for all ψ ∈ H2
R(0, 1) = {u ∈ L2(0, 1) : u, u′, u′′ ∈ L2(0, 1), u(1) = u′(1) = 0}. The

corresponding variational problem is

min J(u) =

∫ 1

0

1

2
(|u′′(x)|2+c(x)|u(x)|2)−f(x)u(x) dx+

α

2
|u(0)|2−u(0)f1+

β

2
|u′(0)|2−u′(0)f2 = 0

over u ∈ H2
R(0, 1). Set up the finite element system based on cubic B spline elements by

computing the local stiffness matrix Φ ∈ R4×4:

Φi,j =

∫ 1

0

φ′′i φ
′′
j dx

of local elements

φ1 = x3, φ2 = 1+3x+3x2−3x3, φ3 = 1+3(1−x)+3(1−x)2−3(1−x)3, φ4 = (1−x)3 on (0, 1).

1.6 Algorithm and Implement

The most attractive feature of the FEM is its ability to handle complicated geometries (and
boundaries) with relative ease. One can use quadrature rules to evaluate H and f (1.4)-(1.5).
H is block-diagonal and sparse. But the linear system for u = uN :

u = H−1f

is possibly large scale (2-3 Dim and system). In general the condition number of H:

cond(H) =
max of eigenvalues of H

min of eigenvalues of H

is large. Thus, we use a pre-conditioner P and solve the pre-conditioned equation

PHu = Pf

by CG (conjugate gradient method) and GMRES (generalized method for Residual method).

1.7 Cubic B spline

Define the space

S3 = {u ∈ C2(0, 1) ∩H3(0, 1) : u ∈ P3( cubic polynomial on )[xk−1, xk]}

where C2(0, 1) is the space of twice continuously differentiable functions on [0, 1] and

H3(0, 1) = {u, , u′, u′′. u′′′ ∈ L2(0, 1)}
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The cubic B-spline is defined by

Bk(x) =


h−3g1(x− xk−1 [xk−2, xk−1]

g2(x−xk−1

h
) [xk−1, xk]

g2(xk+1−x
h

) [xk, xk+1]
h−3g1(xk+2 − x) [xk+1, xk+2]
0 otherwise

where g1(x) = x3, g2(x) = 1 + 3x+ 3x2− 3x3. The stiffness matrix H is pentadiagonal. For
H1

0 conformal element we use

BD
0 = B0 − 4B−1, BD

1 = B1 −B−1, BD
N = BN − 4BN+1, BD

N−1 = BN−1 −BN+1

Figure 3: Cubic B spline

1.8 Cubic Hermite spline

Define the space

S2 = {u ∈ C1(0, 1) ∩H2(0, 1) : u ∈ P3( cubic polynomial on )[xk−1, xk]}

uN(x) =
N−1∑
k=1

αk φ
N
k (x) +

N−1∑
k=1

βk φ̄
N
k (x) (1.9)

where we have the nodal property

uN(xk) = αk and (uN)′(xk) = βk.

and the two Hermite cubic elements are given by

φNk (x) =


(x− xk−1)2

(xk − xk−1)2
(

2

xk−1 − xk
(x− xk) + 1) x ∈ [xk−1, xk]

(x− xk+1)2

(xk − xk+1)2
(

2

xk+1 − xk
(x− xk) + 1) z ∈ [xk, xk+1]

(1.10)
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and

φ̄Nk (x) =


(x− xk)(x− xk−1)2

(xk − xk−1)2
x ∈ [xk−1, xk]

(x− xk)(x− xk+1)2

(xk − xk+1)2
z ∈ [xk, xk+1].

(1.11)

Recall that {φNk (x)} and {φ̄Nk (x)} are independent basis functions and {αk} and βk satisfy
the system of finite element equation.

Figure 4: Hermite Cubic element

1.9 Piecewise Quadratic elements

Q = {u ∈ C(0, 1) ∩H1(0, 1) : u ∈ P2( quadratic polynomial on )[xk−1, xk]}

Let z2i+1 is the midpoint of the interval

z2k+1 =
xk + xk+1

2
and z2k = xk

Then,

φN2k(z) =


(z − z2k−1)(z − z2k−2)

(z2k − z2k−1)(z2k − z2k−2))
z ∈ [xk−1, xk]

(z − z2k+1)(z − z2k+2)

(z2k − z2k+1)(z2k − z2k+2))
z ∈ [xk, xk+1]

and

φN2k+1(z) =
(z − z2k)(z − z2(k+1))

(z2k+1 − z2k)(z2k+1 − z2(k+1)

z ∈ [xk, xk+1]
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They are zero, otherwise. Then,

uN(z) =
2N−1∑
k=1

αk φ
N
k (z)

where
uN(zk) = αk.

Figure 5: Quadratic spline

1.10 Variational method for constructing finite elements

The variational method can be used to construct best elements. For example consider the
following constrained minimizations:

min J(u) =

∫ 1

0

1

2
|u′|2 dx subject to u(0) = a0, u(1) = a1 (1.12)

min J(u) =

∫ 1

0

1

2
|u′′|2 dx subject to u(0) = a0, u

′(0) = b0, u(1) = a1, u′(1) = b1.

(1.13)

min J(u) =

∫ 1

0

1

2
|u′′|2 dx subject to u(0) = a0, u(

1

3
) = a1, u(

2

3
) = a2, u(1) = a3

(1.14)
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It can be shown that
u(x) = a0B

1
0(x) + a1B

1
1(x),

is the solution to (1.12), where {B1
k(x)}, ; k = 0, 1 (N = 1) is the linear elements and

u(x) =
1∑

k=0

ak φ
1
k(x) + bk φ̄

1
k(x)

is the solution to (1.13) where {φ1
k(x)} and {φ̄1

k(x)} for k = 0, 1 (N = 1) are the Hermite
cubic elements.
Exercise 5 For the second problem (1.13) define the Lagrangian functional

L(u, λ, µ) = J(u) + (λ0, u(0)− a0) + (λ1, u(0)− a1) + (µ0, u
′(0)− b0) + (µ1, u

′(1)− b1).

where λk and µk for k = 0, 1 is the Lagrange multiplier associated with the constraints.
Then, it follows from the Lagrange multiplier theory [Ito] that for all ψ ∈ H2(0, 1)

∂

∂u
L(u, λ, µ)(ψ) =

∫ 1

0

u′′ψ′′ dx+ λ0ψ(0) + λ1ψ(1) + µ0ψ
′(0) + µ1ψ

′(1) = 0.

It follows from (1.8) that the strong form is given by

u′′′′ = 0

with
u′′′(0) = −λ0, u′′′(1) = λ1, u′′(0) = µ0, u′′(1) = −µ1.

Thus, u(x) is the cubic polynomial and given by the cubic Hermite polynomials.

For the third problem (1.14) for xk = k
3
, 0 ≤ k ≤ 3

L(u, λ) = J(u) +
3∑

k=0

λk (u(xk)− ak).

The Lagrange theory gives

∂

∂u
L(u, λ, µ)(ψ) =

∫ 1

0

u′′ψ′′ dx+ λ0ψ(0) + λ1ψ(
1

3
) + λ2ψ(

2

3
) + λ3ψ(1) = 0.

By the integration by parts on each subinterval (xk−1, xk)∫ xk

xk−1

u′′ψ′′ dx = u′′ψ′ − u′′′ψ|x=xk
x=xk−1

+

∫ xk

xk−1

u′′′′ψ dx

we have

(u′′′(0) + λ0)ψ(0) + (−u′′′((1
3
)−)− u′′′((1

3
)+) + λ1)ψ(1

3
)

+(−u′′′((2
3
)−)− u′′′((2

3
)+) + λ2)ψ(2

3
) + (−u′′′(1) + λ3)ψ(1) +

∫ 1

0
u′′′′ψ dx = 0
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for all ψ ∈ H2(0, 1) ∪ C1(0, 1) satisfying ψ′(xk) = 0. Thus, we obtain the strong form

u′′′′ = 0

with

u′′′(0) = −λ0, [u′′′(
1

3
)] = λ1, [u′′′(

2

3
)] = λ2, u′′′(1) = λ3

Thus, u(x) is the piecewise cubic polynomial on (0, 1) and

u(x) =
N∑
k=0

uk φ
N
k (x) (N = 3)

where {φNk } is the cubic B-spline and the coefficients {uk} are determined by the constraints.

Lagrange multiplier theory [Ito] Consider the constrained minimization

min J(u) subject to E(u) = 0

Define the Lagrangian functional

L(u, λ) = J(u) + (λ,E(u))

Under an appropriate condition there exists a Lagrange multiplier λ such that

∂

∂u
L(u, λ)(ψ) = (J ′(u)(ψ) + (λ,E ′(u)(ψ)) = 0

for all directions ψ ∈ X.
For the case of only one constraint and only two variables (x, y) ∈ R2 = X as depicted

in Figure 6, consider the optimization problem

min f(x, y) subject to g(x, y) = c⇒ L(x, y, λ) = f(x, y) + λ (g(x, y)− c).

2 Theoretical foundation

In this section we develop the variational principle for the finite element analysis.

2.1 Function spaces

In this section we introduce function spaces defined on a domain=subset (sufficiently smooth)
in Rn Let X = C(Ω) is the space of continuous functions on domain. Then, X is a vector
space since X is a vector space if

(α f1 + β f2)(x) = α f1(x) + β f2(x) ∈ X (2.1)

15



Figure 6: Geometrical proof of the Lagrange theory: The red curve shows the constraint
g(x, y) = c The blue curves are contours of f(x, y). The point where the red constraint
tangentially touches a blue contour is the maximum of f(x, y) along the constraint, since
d1 < d2. That is ∇L = ∇f + λ∇g = 0 at the point.

for all all f1, f2 ∈ X and α, β ∈ R. Define Lp norm on X = C(Ω) by

|f |Lp = (

∫
Ω

|f(x)|p dx)
1
p . (2.2)

In general (X, ||X) is the vector space X with equipped by norm ||X).

Definition (Normed space (X, ||X)
(1) A set X is a vector space if for all all f1, f2 ∈ X and α, β ∈ R.

α f1 + β f2 ∈ X. (2.3)

(2) A normed space is a vector space equipped with norm x ∈ X → |x|X ∈ R+ satisfying

• |f |X = 0 if and only if f = 0,

• |cf |X = |c||f |X for all c ∈ R and f ∈ X

• the triangle inequality
|f1 + f2|X ≤ |f1|X + |f2|X

holds for all f1, f2 ∈ X
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(3) A vector space X is pre-Hilbert (Inner product) space equipped with an inner product
(x1, x2) ∈ X ×X → R satisfying

(αx1 + β x2, y) = α (x1, y) + β (x2, y)

(y, α x1 + β x2) = α (x1, y) + β (x2, y)

(x1, x2) = (x2, x1)

(x, x) ≥ 0 and (x, x) = 0 if and only if x = 0

Define |x|X =
√

(x, x). Then, X is a normed space. In fact,

|f + g|2X = (f, f)X + 2(f, g)X + (g, g)X ≤ |f |2X + 2|f |X |g|X + |g|2X = (|f |X + |g|X)2

where we used Cauchy-Schwarz inequality |(f, g)|X | ≤ |f |X |g|X . Since

|f + tg|2X = |f |2 + 2t (f, g)X + t2 |g|2X for all t ∈ R,

thus |(f, g)X |2 ≤ |f |2X |g|2X .

Let f(x) = f(x1, ·, xn) is an n-dimensional function and Ω is a subset of Rn. Let C(Ω) =the
space of continuous functions on Ω. For p ≥ 1 define p−norm on X by

|f |Lp = (

∫
Ω

|f(x)|p dx|
1
p

If p = 2, X = C(Ω) is a pre-Hilbert space with the inner product

(f, g)L2 =

∫
Ω

f(x)g(x) dx

Definition ((Cauchy sequence and Banach space If a sequence fn is a normed space X is
called a Cauchy sequence if |fn − fm|X → 0 as m ≥ n → ∞. The if every Coach sequence
has the limit f in X, the X is complete and X is a Banach space.

Example The rational numbers {Q, ||} is not complete. Consider
√

2 = 1.41.. Let ak ≤ bk be
rational number pairs with |ak − bk| ≤ 10−k. for example a0 = 1, b0 = 2, a1 = 1.4, b1 = 1.5,
a0 = 1.41, b0 = 1.42, Then {ak} and {bk} are Cauchy sequence in Q (i.e., |an − am| ≤ 10−n

and |bn − bm| ≤ 10−n). But the candidate limit
√

2 /∈ Q and (Q, ||) is not complete. Also,
|an− bn| ≤ i−n → 0 and the Cauchy sequences {an} and {bn} are in an equivalent class, say√

2 of Cauchy sequences in Q. If we add the all irrational numbers to Q, then it becomes
the real line R, which is complete. Thus, R is the completion of (Q, ||).

In general two Cauchy sequences {fk} and {gk} in (X, ||X) are said to be in a equivalent
class if |fn − gn|X → 0 as n→∞. Let X̄ =the completion of X be all equivalent classes of
Cauchy sequences in (X, ||X) with norm

|f |X̄ = lim
k→∞
|fk|
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for f ∈ X̄. Then X̄ is a Banach space [Ito].
Then, for p ≥ 1

Lp(Ω) = {
∫

Ω

|f(x)|p dx <∞}

is the completion of C(Ω) with respect to Lp norm by the equivalent classes of Cauchy
sequences in C(Ω) with Lp(Ω) norm:

|f |Lp = (

∫
Ω

|f |p dx)
1
p .

The complete pre-Hilbert space is called Hilbert space, i.e., L2(Ω) is a Hilbert space.
Example Let X = C(0, 1) with L1 norm. Consider function sequences

fn(x) =


0 on (0, 1

2
)

n(x− 1
2
) on (1

2
, 1

2
+ 1

n
)

1 on (1
2

+ 1
n
, 1))

gn(x) =


0 on (0, 1

2
− 1

n
)

n(x− 1
2

+ 1
n
) on (1

2
− 1

n
, 1

2
)

1 on (1
2
, 1))

Then, gn ≤ fn are Cauchy sequences in L1 norm and

|fn − gn|1 ≤
1

n
→ 0

Thus, {fn} and {gn} belong to an equivalent class of Cauchy sequences ({fn} ∼ {gn}). Thus,
the candidate limits f and g of {fn} and {gn} defined by

f(x) =


0 on (0, 1

2
]

1 on (1
2
, 1)

g(x) =


0 on (0, 1

2
)

1 on [1
2
, 1))

belong to the same equivalent class. Note that f and g differ at a a single point x = 1
2
. In

general if f ∼ g (i.e., f and g belong to the same equivalent class) differ at a countable many
points.

Exercise 6 Consider ∫ 1

0

(u′(x)ψ′(x)− fε(x)ψ(x)) dx, u(0) = u(1) = 0

with

fε =


0 |x− 1

2
| ≥ ε

2

1
ε
|x− 1

2
| ≤ ε

2
.

Since −u′′ε = fε, we have for ε = 1
n

uε(x) =


1
2
(1

2
− |x− 1

2
|) |x− 1

2
| ≥ ε

2

− 1
2ε

(x− 1
2
)2 + 1

4
− ε

8
|x− 1

2
| ≤ ε

2
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That is, u′ε(x) ∈ C(0, 1) is a Cauchy sequence in L1(0, 1)-norm and if let L1(0, 1) is
the completion of C(0, 1) with L1(0, 1)-norm, then u′ε(x) converges to u′ ∈ L1(0, 1) with
u = 1

2
(1

2
− |x− 1

2
|), i.e.,

u′(x) =



1
2

x < 1
2

0 x = 1
2

−1
2

x > 1
2

Also, note that

lim
ε→0+

∫ 1

0

fε(x)ψ(x) dx = ψ(
1

2
) for all ψ ∈ C(0, 1)

and thus u satisfies ∫ 1

0

u′(x)ψ′(x) dx = ψ(
1

2
) for all ψ ∈ H1

0 (0, 1)

2.2 Distribution and Weak derivative

In this section we introduce the distribution (generalized function). The concept of distribu-
tion is very essential for defining a generalized solution to PDEs and provides the foundation
of PDE theory. Let D(Ω) be a vector space of all infinitely many continuously differentiable
functions C∞0 (Ω) with compact support in Ω. That is,

α f1 + β f2 ∈ D(Ω)

for all f1, f2 ∈ D(Ω) and α, β ∈ R. For example Ω = Rn. For any compact set K (closed
and bounded) of Ω, let DK(Ω) be the set of all functions f ∈ C∞0 (Ω) whose support are in
K. Define the derivatives for α = (α1, · · ·αn)

Dαf =
∂α1 · · · ∂αnf
∂xα1

1 · · · ∂xαnn
.

for f ∈ D(Rn).

A linear functional T defined on D(Ω) satisfies

T (αφ1 + β φ2) = αT (φ1) + β T (φ2)

for all α, β ∈ R and φ1, φ2 ∈ D(Ω).
Definition (Distribution) A linear functional T defined on C∞0 (Ω) is a distribution if for
every compact subset K of Ω, there exists a positive constant C and a positive integer k
such that

|T (φ)| ≤ C sup|α|≤k, x∈K |Dαφ(x)| for all φ ∈ DK(Ω).

Example (Distribution) (1) For f is a locally integrable function on Ω, one defines the cor-
responding distribution by

Tf (φ) =

∫
Ω

fφ dx for all φ ∈ C∞0 (Ω).
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since

|Tf (φ)| ≤
∫
K

|f | dx sup
x∈K
|φ(x)|.

(2) The point evaluation T (φ) = φ(0) defines the Dirac delta δ0 at x = 0, i.e.,

|δ0(φ)| ≤ sup
x∈K
|φ(x)|.

(3) The line integral T (φ) =
∫

Γ
∂φ
∂n
ds at the helper surface, i.e.,

|
∫

Γ

∂φ

∂n
ds| ≤ sup

x∈K
|∇φ(x)|

.
Definition (Weak Derivative) A distribution S defined by

S(φ) = −T (Dxkφ) for all φ ∈ C∞0 (Ω)

is called the distributional derivative of T with respect to xk and we denote the distribution
S = DxkT .

That is, the weak derivative of a distribution T always exits as a distribution In general we
have

S(φ) = DsT (φ) = (−1)|s| T (Dsφ) for all φ ∈ C∞0 (Ω).

This definition is naturally followed from that for f is continuously differentiable∫
Ω

Dxkfφ dx = −
∫

Ω

f
∂

∂xk
φ dx

and thus Dxkf = DxkTf = T ∂f
∂xk

f if f is continuously differentiable. Thus, we let Dαf denote

the distributional derivative of Tf if f is a locally integrable function on Ω, i.e.

Dαf(φ) =

∫
Ω

(−1)|α|f(x)Dαφ(x) dx.

Also, note that

lim
h→0

δx+h(ψ)− δx(ψ)

h
= lim

h→0

ψ(x+ h)− ψ(x)

h
= ψ′(x) = δx(ψ

′)

and thus Dδx = δ′(x).

Example (Weak derivative) Let H be the Heaviside function defined by

H(x) =

{
0 for x < 0
1 for x ≥ 0

Then,

DTH (φ) = −
∫ ∞
−∞

H(x)φ′(x) dx = φ(0)

20



and thus DTH = DH = δ0 is the Dirac delta function at x = 0. Moreover for Hε defined by

Hε(x) =


0 x ≤ 0

x
ε

0 ≤ ε

1 x ≥ ε

we have

H ′ε(φ) =
1

ε

∫ ε

0

φ(x) dx→ φ(0)

as ε→ 0+ and thus H ′ε converges to δ0 in the sense of distribution.

(2) The distributional solution for −D2u = δx0 satisfies

−
∫ ∞
−∞

uφ′′ dx = φ(x0)

for all φ ∈ C∞0 (R). That is, u = 1
2
|x− x0| is the fundamental solution, i.e.,

−
∫ ∞
−∞
|x− x0|φ′′ dx =

∫ x0

∞
φ′(x) dx−

∫ ∞
x0

φ′(x) dx = 2φ(x0).

In general for d ≥ 2 let

G(x, x0) =


1

4π
log|x− x0| d = 2

cd |x− x0|2−d d ≥ 3.

Then
∆G(x, x0) = 0, x 6= x0.

and u = G(x, x0) is the fundamental solution to to −∆ in Rd,

−∆u = δx0 .

In fact, let Bε = {|x − x0| ≤ ε} and Γ = {|x − x0| = ε} be the surface. By the divergence
theorem ∫

Rd\Bε(x0)

G(x, x0)∆φ(x) dx =

∫
Γ

∂

∂ν
φ(G(x, x0)− ∂

∂ν
G(x, x0)φ(s)) ds

=

∫
Γ

(ε2−d
∂φ

∂ν
− (2− d)ε1−dφ(s)) ds→ 1

cd
φ(x0)

That is, G(x, x0) satisfies

−
∫
Rd
G(x, x0)∆φ dx = φ(x0).
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In general let L be a linear differential operator and L∗ denote the formal adjoint operator
of L, i.e.

(Lφ, ψ) = (φ,L∗ψ)

ψ ∈ C∞0 (Ω). An locally integrable function u is said to be a distributional solution to Lu = T
where L is a differential operator and T is distribution if∫

Ω

u(x)(L∗ψ)(x) dx = T (ψ)

for all ψ ∈ C∞0 (Ω).

Exercise 7 (1) Let {BN
k } be the linear spline function. Then,

uN =
N−1∑
k=1

uk B
N
k (x)

satisfies

D2uN =
uk+1 − 2uk + uk−1

h2
δxk .

(2) Let {BN
k } be the cubic spline function. Then,

D3BN
k = 6N3 [1, 3,−3,−1]

is picewise constant on (xk−2, xk+2) and

D4BN
k (u) = 6N3 (uk−2 − 4uk−1 + 6uk − 4uk+1 + uk+2).

2.3 Sobolev space

Define the the Sobolev space

Wm,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω), |α| = α1 + · · ·αn ≤ m |s| ≤ m}

with norm

|f |Wm,p(Ω) =

∫
Ω

∑
|α|≤m

|Dαf |p dx

 1
p

.

Here, Dαf ∈ L2(Ω) is equivalent to there exists a g ∈ L2(Ω) such that∫
Ω

g(x)ψ(x) dx = Dα(ψ) =

∫
Ω

(−1)αf(x)Dαψ dx.

If f belongs to the completion of Cm(Ω) with Wm,p(Ω) norm, then f ∈ Wm,p(Ω).

X = Wm,p(Ω) is complete. In fact If {fn} is Cauchy in X, then {Dαfn} is Cauchy in
Lp(Ω) for all |α| ≤ m. Since Lp(Ω) is complete, Dsfn → gα in Lp(Ω). But since

lim
n→∞

∫
Ω

fnD
αφ dx =

∫
Ω

fDsφ dx =

∫
gαφ dx,
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we have Dsf = gs for all |s| ≤ m and |fn − f |X → 0 as n→∞.
Let Hm(Ω) = Wm,2(Ω) be the Hilbert space with the inner product

(f, g)Hm =

∫
Ω

∑
|α|≤m

DαfDαg dx.

Define the gradient of f by

∇f = gradf = (
∂f

∂x1

, · · · , ∂f
∂xn

)

and the divergence of vector function ~ψ = (ψ1, · · · , ψn) by

∇ · ~ψ = div~ψ =
∂ψ1

∂x1

+ · · ·+ ∂ψn
∂xn

Let n be the outward normal vector at the boundary ∂Ω of Ω. We have the divergence
formula ∫

Ω

div~ψ dx =

∫
∂Ω

n · ~ψ ds. (2.4)

Note that for a rectangular domainR = (a, b)× (c, d)∫ b

a

∫ d

c

(
∂ψ1

∂x
+
∂ψ2

∂y
) dxdy =

=

∫ d

c

(ψ1(b, y)− ψ1(a, y)) dy +

∫ d

c

(ψ1(b, y)− ψ1(a, y)) dy =

∫
∂R

n · ~ψ ds,

Since Ω is the limit of partitioned domain Ωh by sub-rectangular domains (ai, bi) times(ci, di)
and the Riemann sum satisfies∑

i

∫ bi

ai

∫ di

ci

(
∂ψ1

∂x
+
∂ψ2

∂y
) dxdy =

∫
∂Rh

n · ~ψ ds,

where the inner path integrals are cancelling out, the divergence theory follows from taking
the limit h→ 0+. Since div(φψ) = ∇φ · ψ + φdivψ we have the Green formula∫

Ω

φ divψ =

∫
∂Ω

φn · ψ ds−
∫

Ω

∇φ · ψ dx (2.5)

and thus for ψ = ∇v and u = φ∫
Ω

u∆v =

∫
∂Ω

u
∂

∂n
v ds−

∫
∇u · ∇v dx (2.6)

where ∆ = divgrad = ∇ · ∇ is the Laplace operator

∆u =
∑
k

∂2u

∂x2
k

= ∇ · ∇u.
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Note that for the one dimensional (2.5) reduces to the integration by parts∫ b

a

φ(x)ψ′(x) dx = φ(x)ψ(x)|x=b
x=a −

∫ b

a

φ′(x)ψ(x) dx

since ∫
∂Ω

φn · ψ ds = φ(x)ψ(x)|x=b
x=a.

In particular
H1(Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω)n}.

and
H1

0 (Ω) = {u ∈ H1(Ω) : u|∂Ω = 0}.

2.4 Lax-Milgram Theorem and Banach-Necas-Babuska Theorem

In this section we discuss the existence and uniqueness of solution s to a linear equation:
Ax = f . Let X be a Hilbert space=the complete inner product space with

(x, y)X is a bounded bilinear form on X ×X.

Let σ be a (complex-valued) sesquilinear form on X ×X satisfying

σ(αx1 + β x2, y) = ασ(x1, y) + β σ(x2, y)

σ(x, α y1 + β y2) = ᾱ σ(x, y1) + β̄ σ(x, y2),

|σ(x, y)| ≤M |x||y| for all x, y ∈ X (Bounded) (2.7)

and
Reσ(x, x) ≥ δ |x|2 for all x ∈ X and δ > 0 (Coercive). (2.8)

If X is real, then σ : (x, y) ∈ X ×X → R is a bounded bilinear form.
Then for each f ∈ X∗ =the dual space of X, i.e.,

X∗ = the space of bounded linear functionals f on X,

there exist a unique solution x ∈ X to

σ(x, y) = f(y) = 〈f, y〉X∗×X for all y ∈ X (2.9)

and
|x|X ≤ δ−1 |f |X∗ .

Proof: Let us define the linear operator S from X∗ into X by

Sf = x, f ∈ X∗

where x ∈ X satisfies
σ(x, y) = 〈f, y〉 for all y ∈ X.
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The operator S is well defined since if x1, x2 ∈ X satisfy the above, then σ(x1 − x2, y) = 0
for all y ∈ X and thus δ |x1 − x2|2X ≤ Reσ(x1 − x2, x1 − x2) = 0.

Next we show that dom(S) is closed in X∗. Suppose fn ∈ dom(S), i.e., there exists
xn ∈ X satisfying σ(xn, y) = 〈fn, y〉 for all y ∈ X and fn → f in X∗ as n→∞. Then

σ(xn − xm, y) = 〈fn − fm, y〉 for all y ∈ X

Setting y = xn − xm in this we obtain

δ |xn − xm|2X ≤ Reσ(xn − xm, xn − xm) ≤ |fn − fm|X∗|xn − xm|X .

Thus {xn} is a Cauchy sequence in X and so xn → x for some x ∈ X as n → ∞. Since σ
and the dual product are continuous, thus x = Sf .

Now we prove that dom(S) = X∗. Suppose dom(S) 6= X∗. Since dom(S) is closed there
exists a nontrivial x0 ∈ X such that 〈f, x0〉 = 0 for all f ∈dom(S). Consider the linear
functional F (y) = σ(x0, y), y ∈ X. Then since σ is bounded F ∈ X∗ and x0 = SF . Thus
F (x0) = 0. But since σ(x0, x0) = 〈F, x0〉 = 0, by the coercivity of σ x0 = 0, which is a
contradiction. Hence dom(S) = X∗. �

Remark (1) If X = RN and A ∈ RN×N , define a bilinear form σ by

σ(x, y) = (Ax, y)

and f(y) = (b, y). The Lax-Milgram theory states if A is positive definite, i.e., (Ax, x) > 0
for all x ∈ RN , there exists a unique solution to x to Ax = b and x = A−1b.
(2) In general there exists A ∈ L(X,X∗) such that

σ(x, y) = 〈Ax, y〉

and (2.9) is equivalent to the linear equation Ax = f , where

〈f, ψ〉X∗×X = f(ψ)

is the dual product of X∗ ×X.
(3) if σ is symmetric (σ(x, y) = σ(y, x)), then the minimization

min J(u) =
1

2
σ(u, u)− f(u)

has a unique solution u and Au = f . In fact

d

dt
J(u+ t ψ)|t=0 = σ(u, ψ)− f(ψ).

Also, σ(x, y) defines an inner-product on X. and u = SF coincides with the Riesz represen-
tation of F ∈ X∗, i.e., given f ∈ X∗ there exists a unique u = uf ∈ X satisfying

f(φ) = (u, φ)X for all φ ∈ X,

and |uf |X = |f |X∗ . Exercise (1) X∗ with graph norm

|f |X∗ = inf{M : |f(x)| ≤M |x|}
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is a Banach space. Suppose fn ∈ X∗ is Cauchy sequence. Then, for all x ∈ X

|fn(x)− fm(x)| ≤ |fn − fm|X∗|x|X → 0 as m→∞

and thus, lim fn(x) exist since (R, ||) is complete. Define a functional f by

f(x) = lim
n→∞

fn(x)

Then, f is linear and bounded. Given ε > 0 there exists N such that

|fn(x)− f(x)| = |fn(x)− f(x)| ≤ ε|x|

for n ≥ N . Thus, |fn − f |X∗ → 0 as n→∞.
(2) Since |(f(φ)| = |(uf , φ)| ≤ |uf |X |φ|X , |f |X∗ ≤ |uf |X and thus |f |X∗ = |uf |X for the Riesz
representation.

Example (Laplace operator) Consider X = H1
0 (Ω), H = L2(Ω) and

σ(u, φ) = (u, φ)X =

∫
Ω

∇u · ∇φ dx.

Then, by Green formula∫
Ω

−∆uφ dx = −
∫
∂Ω

∂u

∂ν
φ+

∫
Ω

∇u · ∇φ dx,

Au = −∆u = −(
∂2

∂x2
1

u+
∂2

∂x2
2

u)

For Ω = (0, 1) and f ∈ L2(0, 1)∫ 1

0

d

dx
y
d

dx
u dt =

∫ 1

0

f(x)y(x) dx

is equivalent to ∫ 1

0

d

dx
y (

d

dx
u+

∫ 1

x

f(s) ds) dx = 0

for all y ∈ H1
0 (0, 1). Thus,

d

dx
u+

∫ 1

x

f(s) ds = c (a constant)

and therefore d
dx
u ∈ H1(0, 1) and

Au = − d2

dx2
u = f in L2(0, 1).

Transport equation Consider the transport equation for u = u(x, t):

ut + b(x) · ∇u = 0, u(x, 0) = u0(x). (2.10)
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For U(t) = u(t, x(t)) by the chain rule

d

dt
U(t) = ut +

d

dt
x(t) · ∇u.

Let x(t) satisfies the (backward) ordinary differential equation (characteristic)

d

dt
x(t) = b(x(t)), x(t) = x.

Then, d
dt
U(t) = 0 along the characteristic curve x(t) and thus

u(x, t) = u(x(0), 0) = u0(x0), x0 = x(0),

is the solution to the transport equation. Thus we consider the diffusive transport equation

Au = −∇ · (a(x)∇u) + b(x) · ∇u+ c(x)u(x) = f(x).

Exercise 8 For the one dimensional non-symmetric form

a(u, ψ) =

∫ 1

0

a(x)u′ψ′ + b(x)u′ψ + c(x)u(x)ψ = f(ψ).

we have

a(u, u) =

∫ 1

0

(a(x|u
′(x)|2 + (−1

2
b′ + c(x))|u|2 dx ≥ δ

∫ 1

0

|u′|2 dx

with X = H1
0 (0, 1). If assume −1

2
b′+ c(x)) ≥ 0. the coercivity (2.8) holds. For boundedness

(2.7) we use |ψ|∞ ≤ |ψ|H1
(

0,1).

One can prove that if a is symmetric, then the inf-sup condition (2.12) is satisfied provided
that a(u, u) 6= 0 for u ∈ H1

0 (0, 1) and the BNB theory applies.

Excursus 9 (Elliptic operator) Consider a second order elliptic equation

Au = −∇ · (a(x)∇u) + b(x) · ∇u+ c(x)u(x) = f(x),
∂u

∂ν
= g at Γ1 u = 0 at Γ0

where Γ0 and Γ1 are disjoint and Γ0 ∪ Γ1 = Γ. Integrating this against a test function φ, we
have∫

Ω

Auφ dx =

∫
Ω

(a(x)∇u · ∇φ+ b(x) · ∇uφ+ c(x)uφ) dx−
∫

Γ1

gφ dsx =

∫
Ω

f(x)φ(x) dx,

for all φ ∈ C1(Ω) vanishing at Γ0. Let X = H1
Γ0

(Ω) is the completion of C1(Ω) vanishing at
Γ0 with inner product

(u, φ) =

∫
Ω

∇u · ∇φ dx

i.e.,
H1

Γ0
(Ω) = {u ∈ H1(Ω) : u|Γ0 = 0}
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Define the bilinear form σ on X ×X by

σ(u, φ) =

∫
Ω

(a(x)∇u · ∇φ+ b(x) · ∇uφ+ c(x)uφ.

Then, by the Green’s formula

σ(u, u) =

∫
Ω

(a(x)|∇u|2 + b(x) · ∇(
1

2
|u|2) + c(x)|u|2) dx

=

∫
Ω

(a(x)|∇u|2 + (c(x)− 1

2
∇ · b) |u|2) dx+

∫
Γ1

1

2
n · b|u|2 dsx.

If we assume

0 < a ≤ a(x) ≤ ā, c(x)− 1

2
∇ · b ≥ 0, n · b ≥ 0 at Γ1,

then σ is coercive with δ = a. For boundedness (2.7) we use the Poincare inequality∫
Ω

|u|2 dx ≤ M̃

∫
Ω

|∇u|2 dx

for some M̃ > 0 and all u ∈ H1
Γ0

.

Remark Γ0 = {n · ~b < 0} is inflow boundary and we specify u and Γ1 = {n · ~b > 0} is
outflow boundary and the flux ∂

∂n
is specified.

Exercise 10 (Bi-Harmonic equation) Consider the bi-harmonic equation

∆2u+ c(x)u = f

with various boundary conditions at ∂Ω. For example

u =
∂u

∂n
= 0

In this case X = {u ∈ H2(Ω) : u = ∂u
∂n

= 0} and

σ(u, v) =

∫
Ω

(∆u∆v + c(x)u(x)v(x)) dx

since by Green formula∫
Ω

∆2uv dx =

∫
∂Ω

(
∂∆u

∂n
−∆u

∂v

∂n
) ds+

∫
Ω

∆u∆v dx.

Exercise 11 Consider the boundary condition

∂∆u

∂n
− αu = f1, ∆u+ β

∂u

∂n
= f2,
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Then, we have X = H2(Ω) and

σ(u, v) =

∫
Ω

(∆u∆v + c(x)u(x)v(x)) dx+

∫
∂Ω

αuv + β
∂u

∂n

∂v

∂n

=

∫
Ω

fv dx+

∫
∂Ω

(f1v − f2
∂v

∂n
) ds.

The Banach space version of Lax-Milgram theorem is as follows.

Banach-Necas-Babuska (BNB) Theorem Let V and W be Banach spaces. Consider
the linear equation for u ∈ W

a(u, v) = f(v) for all v ∈ V (2.11)

for given f ∈ V ∗, where a is a bounded bilinear form on W × V . The problem is well-posed
if and only if the following conditions hold:

inf
u∈W

sup
v∈V

a(u, v)

|u|W |v|V
≥ δ > 0

a(u, v) = 0 for all u ∈ W implies v = 0.

(2.12)

Under conditions we have the unique solution u ∈ W to (2.11) satisfies

|u|W ≤
1

δ
|f |V ∗ .

Proof: Let A be a bounded linear operator from W to V ∗ defined by

〈Au, v〉V ∗×V = a(u, v) for all u ∈ W, v ∈ V.

The inf-sup condition is equivalent to for any u ∈ W :

|Au|V ∗ ≥ δ|u|W ,

and thus the range of A, R(A) is closed in V ∗ and N(A) = 0. But since V is reflexive and

〈Au, v〉V ∗×V = 〈u,A∗v〉W×W ∗

from the second condition N(A∗) = {0}. It thus follows from the closed range that R(A) =
N(A∗)⊥ = V ∗. Thus, A is bijective and from the open mapping theorems that A−1 is
bounded. �

2.5 Mixed finite element

In this section we discuss the applications of the Banach-Necas-Babuska thorem. An elliptic
equation −∇ · (a∇u) = f, u = 0 at ∂Ω is equivalent to

∇ · p = f, a∇u+ p = 0.
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(1) Note that ∫
Ω

∇ · p φ1 dx =

∫
∂Ω

n · ·p φ1 ds+

∫
Ω

p · ∇φ1 dx =

∫
Ω

p · ∇φ1 dx

for φ1 ∈ H1
0 (Ω). Thus, we define a and f (2.11) by

a((u, p), (φ2, φ1)) = (a∇u+ p, φ2)− (p,∇φ1) = (f, φ2)

for (u, p) ∈ W = H1
0 (Ω) × L2(Ω)2 and (φ2, φ1) ∈ V = L2(Ω)2 × H1

0 (Ω) We use the linear
element for u and the piecewise constant element for p.

(2) Note that∫
Ω

a∇u · φ2 dx =

∫
∂Ω

n · (aφ2)u ds+

∫
Ω

∇ · (aφ2)u dx =

∫
Ω

∇ · (aφ2)u dx

Thus, we have the second formulation:

a((u, p), ((φ2, φ1)) = −(u, div (aφ2) + (divp, φ1) = (f, φ1)

for (u, p) ∈ L2(Ω)×H1
div(Ω) and (φ2, φ1) ∈ V = H1

div(Ω)× L2(Ω), where

Hdiv(Ω) = {ψ ∈ L2(Ω)n : divψ ∈ L2(Ω)}.

We can use the piecewise constant for u and the linear elements for p.

(3) A bi-harmonic equation ∆2u = f, u = 0, ∂u
∂n

= 0 at ∂Ω is equivalent to

∆v = f, ∆u = v

Note that ∫
Ω

∆v φ1 dx =

∫
∂Ω

∂v

∂n
, φ1 dx+

∫
Ω

∇v · ∇φ1 dx =

∫
Ω

∇v · ∇φ1 dx,

for φ1 ∈ H1
0 (Ω) and∫

Ω

∆uφ2 dx =

∫
∂Ω

∂u

∂n
, φ2 dx+

∫
Ω

∇u · ∇φ2 dx =

∫
Ω

∇u · ∇φ2 dx.

Thus, we define the bilinear form a and f (2.11) by

a((u, v), (φ2, φ1)) = (∇u,∇φ2) + (v, φ2)− (∇v,∇φ1) = (f, φ1)

for (u, v) ∈ W = H1
0 (Ω)×H1(Ω) and (φ2, φ1) ∈ V = H1(Ω)×H1

0 (Ω). Thus, one can use the
linear finite element for (u, v).

Now we consider the Galerkin method for (2.11). Let Vh ⊂ V and Wh ⊂ W be finite
dimensional. The Ritz-Galerkin method is

uh ∈ Wh satisfying a(uh, vh) = f(vh) for all vh ∈ Vh. (2.13)
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We assume the discrete inf-sup condition:

sup
v∈Vh

a(uh, v)

|v|W
≥ δ|uh| for uh ∈ Wh. (2.14)

Then, we have the error estimate:
Lemma 1. (Cea′ lemma) Assume the discrete inf-sup condition (2.14) is satisfied. Then
the Galerkin method (2.13) has the unique solution uh ∈ Vh and

|uh − u|W ≤ (1 +
c

δ
) inf
v∈Vh
|v − u|W

where a(u, v) ≤ c |u|W |v|V .
Proof: Let u is the solution to a(u, v) = f(v) for all v ∈ V . Then, we have the Galerkin
orthogonality

a(uh − u, v) = 0 for all v ∈∈ Vh.

Thus, it follows from (2.14) that for all ũ ∈ Wh

δ |uh − ũ|W ≤ sup
v∈Vh

a(uh − ũ, v)

|v|V
= sup

v∈Vh

a(u− ũ, vh)
|v|V

≤ c |u− ũ|W .

Now, by triangle inequality for any ũ ∈ Wh we have

|uh − u|W ≤ |uh − ũ|W + |ũ− u|W ≤ (1 +
c

δ
)|u− ũ|W .�

Example (BNB) Consider div(~b(x)u) = f . Let W = L2(Ω) and V = H1(Ω). Since∫
Ω

div(~bu)ψ dx =

∫
∂Ω

uψ n ·~b ds−
∫

Ω

~b(x)u(x)ψ(x) dx.

and assume that u = 0 at n ·~b < 0, define on W × V ∩ {ψ = 0 at n · b > 0}, define

a(u, ψ) = −
∫

Ω

b(x)u(x)ψ′(x) dx.

Let Ω = [−1, 1]× [−1, 1] and

Vh = piecewise constant and Wh = span{ψi,j = Bi(x1)Bj(x2)} ∩ {ψ = 0 at n · b > 0}

Then, we obtain for {ui+1/2,j+1/2}

1
2
((b1u)i+1/2,j+1/2 − (b1u)i−1/2,j+1/2 + (b1u)i+1/2,j−1/2 − (b1u)i−1/2,j−1/2)

+
1

2
((b2u)i+1/2,j+1/2 − (b2u)i+1/2,j−1/2 + (b2u)i−1/2,j+1/2 − (b2u)i−1/2,j−1/2) = fi,j

Take Home Exam I
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Problem 1 Consider the biharmonic equation

u′′′′ − u′′ + c(x)u = f

with boundary conditions

u(0) = 0, u′(0) = 0, u′′′(1) = 0 u′′(1) = αu(1) + 1,

Formulate the weak form and find a sufficient condition on c(x) and α for the existence
and uniqueness of solutions. Hint: Use the Lax-Milgram theory and the inequality |u|∞ ≤√∫ 1

0
|u′|2 dx for all u ∈ H1(0, 1) satisfying u(0) = 0.

Problem 2 Formulate the mixed finite element for

(−a(x)u′ + b(x)u)′ + c(x)u = f(x), u(0) = 0, u(1) = 0

with the linear finite element for u and the piecewise constant for p. Hint: Use the mixed
finite element formulation.

Problem 3 Formulate the mixed finite element method of

u′′′′(x) + u(x) = f, 0 < x < 1,

based on the linear finite elements for the following boundary conditions:

(a) u(0) = 0, u′(0) = 1, u(1) = 0, u′(1) = 2.

(b) u(0) = 0, u′′(0) = 0, u(1) = 0, u′′(1) = 0.

Take Home Exam II
Problem 1 Consider the periodic boudady condition u(0) = u(1) and u′(0) = u′(1) for

−u′′ + c(x)u = f, ; 0 < x < 1

Drive the weak form and develop the finite element method based on the linear basis elements.

Problem 2 Derive the mixed finite element formulation (u, v) by defining v = u′′ for the
biharmonic equation

u′′′′ − u′′ + c(x)u = f

with boundary conditions

u(0) = 0, u′(0) = 0, u′′′(1) = 0, u′′′(1) = αu(1) + 1.

Problem 3 Consider the boundary value problem:

−u′′ + u = f, 0 < x < 1
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with u(0) = u(1) = 0. Using the basis function {φk(x) = sin(kπx)}, i.e.

uN(x) =
N∑
k=0

uk sin(kπ x)

develop the finite element method. Hint: one can use the othogonality∫ 1

0

sin(kπ x) sin(jπ x) dx =
1

2
δk,j,

∫ 1

0

cos(kπ x) cos(jπ x) dx =
1

2
δk,j.

Problem 4 Consider the two-dimensional (stationary) Navier Stokes equations

−∆~u+ ~u · ∇~u+∇p = ~f, ~u = 0(non-slip) at boundary ∂Ω.

∇ · ~u = 0

Define the stream function ψ and vorticity ω by

~u = curlψ = (
∂ψ

∂x1

,− ∂ψ
∂x2

)

ω = curl ~u =
∂u2

∂x1

− ∂u1

∂x2

Show that (ω, ψ) satisfies (Hint: div curlψ = 0 and curl∇p = 0)

∆ψ = ω, −∆ω + ~u · ∇ω = curl ~f (2.15)

with ω = 0 and ψ = 0 at boundary ∂Ω. Formulate the mixed finite element method for
(2.15), assuming ~u is a given vector field.

Problem 5 Consider the Crank-Nicolson and weak form (Lax-Milgram) for the parabolic
equation

(
unh − un−1

h

∆t
, ψh) + a(

unh + un−1
h

2
, ψh) = (f, ψh) for all ψh ∈ Xh

Show that unh satisfies

unh = (I +
1

2
∆tAh)

−1((I − 1

2
∆tAh)u

n−1
h + ∆t f

n+ 1
2

h )

= (I +
1

2
∆tAh)

−1(2un−1
h + ∆t f

n+ 1
2

h )− un−1
h .

Letting ψh =
unh+un−1

h

2
we have

|unh|2H−|un−1
h |2H+a(

unh + un−1
h

2
,
unh + un−1

h

2
) = (f

n+ 1
2

h ,
unh + un−1

h

2
) ≤ δ

2
|u

n
h + un−1

h

2
|2X+

1

2δ
|fn+ 1

2
h |2X∗ .

Using the coercivity a(u, u) ≥ δ |u|2X , we have the estimate

|unh|2H +
n∑
k=1

δ

2
|u

n
h + un−1

h

2
|2X ∆t ≤ |u0

h|2H +
n∑
k=1

1

2δ
|fk+ 1

2
h |2X∗∆t.

33



2.6 Saddle point problem and the Mixed finite element method

Next, we consider the generalized Stokes system. The abstract form of a saddle point prob-
lem can be expressed as follows. Let V and Q be Hilbert spaces and consider the mixed
variational problem for (u, p) ∈ V ×Q of the form

a(u, v) + b(p, v) = f(v), b(u, q) = g(q) (2.16)

for all v ∈ V and q ∈ Q, where a and b is bounded bilinear form on V × V and V × Q. If
we define the linear operators A ∈ L(V, V ∗) and B ∈ L(V,Q∗) by

〈Au, v〉 = a(u, v) and 〈Bu, q〉 = b(u, q)

then it is equivalent to the operator form: A B∗

B 0

 u

p

 =

 f

g

 .

Assume the coercivity on a
a(u, u) ≥ δ |u|2V (2.17)

and the inf-sup condition (Ladyzhenskaya?Babuska?Brezzi condition) on b

inf
q∈P

sup
u∈V

b(u, q)

|u|V |q|Q
≥ β > 0 (2.18)

Note that inf-sup condition that for all q there exists u ∈ V such that Bu = q and |u|V ≤
1
β
|q|Q. Also, it is equivalent to |B∗p|V ∗ ≥ β |p|Q for all p ∈ Q.

Remark The general form of the saddle point problem is given by A B∗

−B C

 u

p

 =

 f

g

 .

where C is a Q-coercive form.

Corollary (Error estimate) Let Vh×Qh be a finite event subspace of V ×Q and (uh, ph) ∈
Vh ×Qh be the solution to the mixed finite element system

a(uh, vh) + b(vh, ph) = f(vh) for all vh ∈ Vh,

b(uh, qh) = g(qh) for all qh ∈ Qh.
(2.19)

Assume the inf-sup condition

inf
qh∈Qh

sup
uh∈Vh

b(uh, ph)

|uh|V |ph|Q
≥ δ > 0 (2.20)
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uniformly in h > 0. Note that

a(uh − u, vh) + b(ph − p, vh) = 0 for all vh ∈ Vh

and thus

|ph − p̃| ≤
1

δ
(|u− uh|V + c |p− p̃|) for all p̃ ∈ Qh.

Since

a(uh − ũ, vh) + a(u− ũ, vh) + b(ph − p, vh) + b(p− p̃, vh) = 0 for all ṽ ∈ Vh, p̃ ∈ Qh,

it follows that there exits a constant C such that

|uh − u|V + |ph − p|Q ≤ C ( inf
ũ∈Vh
|u− ũ|V + inf

p̃∈Qh
|p− p̃|V )

Exercise 13 Consider the mixed finite element approximation (2.19):

uh =
∑N

k=1 uk φk(x) ∈ Vh

ph =
∑M

j=1 pj ψj(x) ∈ Qh.

Let Ah and Bh be defined by

Ak,` = a(φ`, φk), Bj,` = b(φ`, ψj).

Then, we have for (uh, ph)  Ah B∗h

Bh 0

 uh

ph

 =

 fh

gh

 .

Example: Stokes equations Consider the minimization

min J(~u) =

∫
Ω

1

2
|∇~u|2 − (~f, ~u) dx subject to ∇ · ~u = 0

over ~u ∈ H1
0 (Ω). Define the Lagrangian

L(~u, p) = J(~u)− (∇ · ~u, p).

The -Lagrange equation is given by the Stokes equation

∂J
∂~u

= −∆~u+∇p− ~f = 0

∂J
∂p

= −∇ · ~u = 0,

where p denotes the pressure. In this case

B = −div, B∗ = grad
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and the inf-sup condition is given by

inf
q∈L2(Ω)

sup
u∈H1

0 (Ω)

(∇ · u, q)
|u|H1

0
|q|L2

≥ β > 0 (2.21)

The discrete ind-sup condition (2.21) holds for the Taylor-Hood elements, i.e. quadratic
elements for the velocities and linear elements for the pressure. But most obvious choice,
use linear elements for the both is failed, i.e., δh → 0 as h→ 0.

Theorem (Mixed problem) Under conditions (2.17)-(2.18) there exits a unique solution (u, p) ∈
V ×Q to (2.16) and

|u|V + |p|Q ≤ c (|f |V ∗ + |g|Q∗)

Proof: For ε > 0 consider the penalized problem

a(uε, v) + b(v, pε) = f(v), for all v ∈ V

−b(uε, q) + ε(pε, q)Q = −g(q), for all q ∈ Q.
(2.22)

By the Lax-Milgram theorem for every ε > 0 there exists a unique solution (uε, pε) ∈ V ×Q.
From the first equation and (2.18),

β |pε|Q ≤ |f − Auε|V ∗ ≤ |f |V ∗ +M |uε|V .

Letting v = uε and q = pε in the first and second equation and (2.18), we have

δ |uε|2V + ε |pε|2Q ≤ |f |V ∗||uε|V + |pε|Q|g|Q∗ ≤ C (|f |V ∗ + |g|Q∗)|uε|V ),

and thus |uε|V and thus |pε|Q are bounded uniformly in ε > 0. Thus, (uε, pε) has a weakly
convergent subspace to (u, p) in V ×Q and (u, p) satisfies (2.16). �

2.7 Error analysis

In this section we discuss the convergence and error analysis of elliptic equation σ(u, ψ) =
f(ψ) for all ψ ∈ X in the framework of Lax-Milgram theorem.

2.7.1 Conformal case

First, we assume Xh ⊂ X. Assume that uh ∈ Xh satisfies

σ(uh, ψh) = f(ψh) for all ψh ∈ Xh

Since the solution u ∈ V satisfiesσ(u, ψh) = f(ψh) we have

σ(u− uh, ψh) = 0.

This means that the finite element solution uh is the projection of u onto the space Xh when
σ is symmetric form and X is equipped with the inner product σ(·, ·). Thus, It is the best
solution in Xh in the energy norm

√
σ(u, u). In fact, for all vh ∈ Xh

σ(u− vh, u− vh) = σ(u− uh, u− uh) + 2 σ(u− uh, u−vh) + σ(uh − vh, uh − vh)

= σ(u− uh, u− uh) + σ(uh − vh, uh − vh) ≥ σ(u− uh, u− uh)
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Moreover, we have

σ(u− uh, u− uh) = σ(u− uh, u− uh) + σ(u− uh, uh − ûh) = σ(u− uh, uh − ûh)

for all ûh ∈ Xh. Thus,

|u− uh|X ≤
M

δ
inf

ûh∈Xh
|u− ûh|X ,

which provides the error estimate of uh in X.

Aubin-Nitche lemma (L2 error estimate) Let w ∈ X is the adjoint system for w ∈ X:
for all v ∈ X,

a(v, w) = (eh, v), eh = u− uh.

We use the elliptic regularity
|w|H2(Ω) ≤ c |eh|L2(Ω)

Then, for the interpolation function Ihw ∈ Xh of w

(eh, eh)L2 = (eh, u− uh) = a(u− uh, w) = a(u− uh, w − Ihw)

≤M |u− uh|X |w − Ihw|X ≤M |u− uh|Xh |w|H2 ≤ M̃ h2|eh|L2 .

where we used the Galerkin orthogonality. Thus, we obtain

|u− uh|L2 ≤ C h2 |u|H2|w|H2 .

2.7.2 Non-conformal case

Consider the non-confomal finite element system uh ∈ Xh /∈ X

ah(uh, ψh) = f(ψh), for all ψh ∈ Xh, (2.23)

where ah is a uniformly bounded bilinear on Xh ×Xh with

ah(vh, vh) ≥ δ |vh|2Xh for all vh ∈ Vh.

Here, Xh /∈ X but X ∈ Xh. Then, there exits a unique solution uh ∈ Vh to (2.23). Assume
that

ah(u− uh, ψh) = 0.

Thus, for all ûh ∈ Xh

ah(u− uh, u− uh) = ah(u− uh, u− ûh) ≤M |u− uh|Xh|u− ûh|Xh

and thus

|(u− uh|Xh ≤
M

δ
inf
ûh∈Vh

|u− ûh|Xh .
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3 Finite Elements

Local linear element on the right triangle

φ1 = 1− ξ − η., φ2 = ξ, φ3 = η.

Global element in Figure 7

φ1 = 1− x1 − x2, ∇φ1 = (−1,−1), φ2 = 1− x2, ∇φ2 = (0,−1), φ3 = 1 + x1, ∇φ3 = (1, 0)

φ4 = 1 + x1 + x2, ∇φ4 = (1, 1), φ5 = 1 + x2, ∇φ2 = (0, 1), φ6 = 1− x1, ∇φ3 = (−1, 0)
(3.1)

Figure 7: Triangle element

Let φi,j(x1, x2) be the global event at node (i/N, j/N) and

uN(x1, x2) =
∑

1≤≤N−1

∑
1≤j≤N−1

ui,j φi,j(x1, xj) ∈ H1
0 ((0, 1)× (0, 1)

Then, from the weak form for Poisson equation −∆u = f in Ω = (0, 1)× (0, 1)∫
Ω

∇uN · ∇φi,j dx =

∫
f(x)φi,j(x) dx

Exercise 12 Show that for the uniform triangulation on the square (0, 1)× (0, 1) ((3.1) and
Figure 7) with mesh size h = 1

N
we obtain

−(∆hu)i,j =
4ui,j − ui+1,j − ui−1,j − ui,j+1 − ui,j−1

h2
= fi,j ∼ f(xi, yj). (3.2)

Thus, the stiffens matrix H in the column-wise order of ui,j is a tri-diagonal block matrix of
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the form

H =



H0 −I 0 · · ·

−I H0 −I 0 · · ·

. . . . . . . . .

· · · 0 −I H0 −I

· · · 0 −I H0


, H0 =



4 −1 0 · · ·

−1 4 −1 0 · · ·

. . . . . . . . .

· · · 0 −1 4 −1

· · · 0 −1 4


.

Local Quadratic element on the right triangle Let consider local triangle element as in Fig-
ure 8 and the six local quadratic element are given by

Figure 8: Quadratic element

N1 = (1− ξ − η), N2 = ξ(2ξ − 1), N3 = η(2η − 1)

N4 = 4ξ(1− ξ − η), N5 = 4ξη, N6 = 4η(1− ξ − η)

Local element on the square (quadrilateral)

φ1 = (1− ξ)(1− η), φ2 = (1− ξ)η, φ3 = ξ(1− η), φ4 = ξη

Tensor products

φi,j(x1, x2) = BN
i (x1)BN

j (x2).

3.1 Iso-parametric Curved element

Consider the coordinate transformation form x, yto(ξ, η)

ξ = T1(x, y), η = T2(x, y)
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Figure 9: Quadrateral element

and define the local basis function:

φi(x, y) = ψi(T1(x, y), T2(x, y)),

where {ψi(ξ, η)} is the master basis on the master element. For example, the linear transform
from a triangle with vertices (x1, y1), (x2, y2) and (x3, y3) in the counter-clockwise direction
to the master triangle is given by

ξ = 1
2A

((y3 − y1)(x− x1)− (x3 − x1)(y − y1)

η = 1
2A

((y2 − y1)(x− x1)− (x2 − x1)(y − y1))

where A =
(y3 − y1)(x2 − x1)− (x3 − x1)(y2 − y1)

2
is the area of the triangle

Figure 10: The linear transform from an arbitrary triangle to the standard triangle (master
element) and the inverse map.

Then, the stiffness is∫
Ω

∇φi∇φj =

∫
Ω̄

(J∇ψi) · (J∇ψj) |
∂(x, y)

∂(ξ, η)
| dξdη. (3.3)
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where the Jacobean J is defined by

J =

 ∂ξ
∂x

∂η
∂x

∂ξ
∂y

∂η
∂y


3.2 Quadrature rules

A quadrature formula has the form∫
Ω̄

g(ξ, η) dξdη =
L∑
k=1

wkg(ξk, ηk)

where Ω̄ is the standard right triangle and L is the number of points involved in the quadra-
ture. Below we list some commonly used quadrature formulas in 2D using one, three and
four points. The geometry of the points are illustrated in Fig. 11, and the coordinates of the
points and the weights are given in Table. It is noted that only the three-point quadrature
formula is closed, since the three points are on the boundary of the triangle, and the other
quadrature formulas are open.

Figure 11: A diagram of the quadrature formulas in 2D with one, three and four quadrature
points, respectively.

A triangulation is determined by its elements and nodal points. We use the following
notation:

• Triangular elements Kj is sorted and the nodal points (xi, yi) is ordered.

• Coordinate of nodal points Node(1 : 3, j) for each jth triangle, i.e. A 2D array nodes
A: The first index is the index of nodal point in an element j, (in the counter-clockwise)
and the second index is the index of the element.

Element wise assembling: Sequentially, in the order of element Kj we evaluate

sk,i =

∫
Kj

∇φk,j · ∇φl,j dxdy for (k, i) ∈ Node(:, j)
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Figure 12: A diagram of the quadrature formulas in 2D with one, three and four quadrature
points, respectively.

based on the iso-parametric formula (3.3). Then accumulate

Hk,i = Hk,i + sk,i

3.3 Interpolation Error Analysis

A global interpolation function is defined as

vI(x, y) =
∑

i:allnodes

v(ai)φi(x, y), ai = (xi, yi)

where φi(x, y) is the piecewise linear function that satisfies φi(aj) = δij.

Theorem If u ∈ C2(K), then we have an error estimate for the interpolation

|v − vI |∞ ≤ 2h2 max
|α|=2

|Dαv|∞

Furthermore, we have

max |∇(v − vI)|∞ ≤
4h2

ρ
max
|α|=2

|Dαv|∞

where ρ > 0 is the radius of the largest ball contained in the triangle element K.

42



Figure 13: A simple triangulation with the row-wise natural ordering.

Proof: From the definition of the interpolation function and the Taylor expansion

vI =
∑
i=1

u(xi)φi(x, y) =
3∑
i=1

φx,y(u(x, y)+∇u(x, y)·(xi−x, yi−y)+
1

2
(xi−x, yi−y)tD2(ξ, η)(xi−x)

where (ξ, η) is a point in the triangle K. The claim thus follows from the fact that φ(x, y) ≥ 0
and

∑
φi(x, y) = 1. �

4 Parabolic system

Conservation law

d

dt

∫
Ω

q(x, t) dx = −
∫
∂Ω

~f(x, t) ds = net flux throgh the boundary,

where

Q(t) =

∫
Ω

q(x, t) dx

is the total energy on am arbitrary volume and ~f(x, t) is a flux function. By divergence
theorem ∫

ω

(
∂

∂t
q(x, t) + div~f(x, t)) dx = 0
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and we have the conservation

∂

∂t
q(x, t) + div~f(x, t)) = 0

If q = u, then the mass conservation is

∂

∂t
u(x, t) + div~f(x, t)) = 0

with specified flux f = ~b(x)u(1− u) (traffic flow) f = ~bu
2

2
(Burgers flow) and f = (~c(x, t)u)

(continuity). If q(x, t) = ρcfu(x, t) is the energy density where ρ is the mass density and

cf is the specific heat and assume the Fourier law ~f = K(x)∇u(x, t) we obtain the heat
conduction equation

∂ρcf u(x, t)

∂t
= ∇(K(x)∇u(x, t)

where K(x) is a matrix conductivity. It includes the heat equation of the form

∂

∂t
u(x, t) = ∆u(a, t), u(0, x) = u0(x) ∈ L2(Ω) = H.

In general we can formulate the parabolic equation for u = u(x, t), x ∈ Ω, t > 0

(ut, ψ) + a(u(t), ψ) = (f(t), ψ), u(0) = u0 ∈ H, (4.1)

where u(t) = u(: .t) ∈ X and the bounded bilinear form a on X×X as in the Lax-Mailgram
theorem satisfies

a(u, u) ≥ δ |u|2X − ρ |u|2H .
Letting ψ = u(t) in (4.1), we have∫

Ω

∂u(t, x)

∂t
u(t, x) dx+ a(u(t), u(t)) = (f(t), u(t))

where ∫
Ω

∂u(t, x)

∂t
u(t, x) dx =

d

dt

∫
Ω

1

2
|u(t, x)|2 dx

and
a(u(t), u(t)) + (f(t), u(t)) ≥ δ |u(t)|2X − ρ |u(t)|2H − |f(t)|X∗ |u(t)|X

≥ δ

2
|u(t)|2X − ρ |u(t)|2H −

1

2δ
|f(t)|2X∗ ,

where we used the Young inequality

ab ≤ δ

2
|a|2 +

1

2δ
|b|2.

By integrating this in time, we obtain

|u(t)|2H − |u(0, x)|2H +

∫
δ |u(s)|2x ds ≤

∫ t

0

(2ρ |u(s)|2H +
1

δ
|f(s)|2X∗) ds.
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By Gronwall?s inequality we have the estimate

|u(t)|2H +

∫ t

0

δ |u(s)|2X ds ≤ e2ρt |u0|2H +

∫ t

0

e2ρ(t−s) 1

δ
|f(s)|2X∗) ds.

Gronwall′s inequality If t→ e(t) ∈ R satisfies

0 ≤ e(t) ≤ F +

∫ t

0

c(s)e(s) ds,

then

e(t) ≤ F exp(

∫ t

0

c(s) ds).

Proof: Let

0 ≤ e(t) ≤ f(t) = F +

∫ t

0

c(s)e(s) ds

Then,
f ′(t) = c(t)e(t) ≤ c(t)f(t)

and
(f(t)e−

∫ t
0 c(s) ds)′ ≤ 0

Integrating it in time, we obtain

e(t) ≤ f(t) ≤ F e
∫ t
0 c(s) ds.�

Example (Fokker-Planck equation)

ut = ∇ · (A(x)∇u+~b(x)u)− q(x)u(t.x), u(0, x) = u0,

where u(t, x) ≥ 0 represents the probability density function, where A ∈ Rn×n is a symmetric

positive definite matrix, ~b(x) is the drift vector and q(x) is the potential function. One can
formulate it as (4.1) with

a(u, ψ) =

∫
Ω

(A(x)∇u(x) +~b(x)u(x),∇ψ) + (q(x)u(x), ψ(x)) dx

Exercise 14 Consider a system of diffusion equations for u(t, x), v(t, x), x ∈ Ω: ∂u
∂t

∂v
∂t

 = divD(x)

 ∇u
∇v

+ divB(x)

 u

v

+ C(x)

 u

v

 = ~f(t, x)

 n

n

 ·
D(x)

 ∇u
∇v

+ E(x)

 u

v

 = ~g(x) at boundary ∂Ω

where D(x) is 4 by 4 matrix, D = Dt > 0 and B(x), C(x), E(x) are 2 by 2 matrices. Setup
it as (4.1).
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4.1 Time integration

Consider an ordinary differential equation

d

dt
x(t) = f(x(t), t), x(0) = x0.

Integrating this in time

x(tn)− x(tn−1) =

∫ tn

tn−1

f(x(s), s) ds.

We apply various quadrature rule to integrate the RHS, i.e. including

∫ tn

tn−1

f(x(s), s) ds ∼


f(x(tn−1), tn−1) ∆t (explicit ).

f(x(tn), tn) ∆t (implicit ).

1
2
(f(x(tn−1), tn−1) + f(x(tn), tn)) ∆t (Crank-Nicolson).

Implicit in time (First order): un ∈ Xh satisfies

(
unh − un−1

h

∆t
, ψh) + a(unh, ψh) = (f, ψh) for all ψh ∈ Xh (4.2)

Crank-Nicolson scheme: (Second order) is given by

(
unh − un−1

h

∆t
, ψh) + a(

unh + un−1
h

2
, ψh) = (fn+ 1

2 , ψh) for all ψh ∈ Xh

Explicit time-integration is conditionally stable, i.e., the time wise step ∆t > 0 depends
on space-wise mehsize h > 0 and ∆t > 0 need be chosen very small. Implicit scheme
is unconditionally stable but it is of the first order. In general one can use the Runge-
Kutta method and Backward difference schemes and Adams-Burshforth methods for ordinary
differential equations for the space discretized problem.

Stability of Implicit scheme Consider the Galerkin approximation of u(t) ∈ X:

uh(t) =
N∑
k

uk(t)φk(x) ∈ Xh

and let Ah is the stiffness matrix defined by

(Ah)ji = a(φi, φj)

The, implicit-explicit scheme (4.2) is written as

unh − un−1

∆t
+ Ahu

n
h = fnh
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unh ∈ Xh is well-defend by the Laxi-Milgram applied to

a∆t(u, v) =
1

∆t
(u, v)h + a(u, v).

Thus, unh is given by
unh = (I + ∆Ah)

−1)un−1
h + ∆t fnh ).

Note that
(unh − un−1

h , unh) = 1
2
(|unh|2H − |un−1

h |2H + |unh − un−1
h |2H)

a(unh, u
n
h) ≥ δ |unh|2X − ρ |unh|2H .

Letting ψh = unh, we obtain

|un|2H +
n∑
k=1

δ |uk|2∆t+ |ukh − uk−1
h |

2 ≤ |u0
h|2H +

n∑
k

(2ρ |uk|2H +
1

δ
|fk|2X∗)∆t.

By Gronwall?s inequality we have the stability estimate

|un|2H +
n∑
k=1

δ |uk|2∆t+ |ukh − uk−1
h |

2 ≤M (|u0
h|2H +

n∑
k

+
1

δ
|fk|2X∗)∆t).

for M ≥ 0 independent of ∆t, h.

4.2 Semilinear Equation

Consider the semilinear equation (e.g., Navier-Stokes equation)

(ut, ψ) + a0(u(t), ψ) + a1(u(t), ψ) = (f, ψ)

where a0 is X−elliptic and u ∈ X → a1(u, ψ) is nonlinear, the Explicit-Implicit second order
method is given by

(
un − un−1

∆t
, ψh) + a0(

un + un−1

2
, ψh) +

1

2
(a1(un−1, ψh)− a1(un−2, ψh)) = (f, ψh)

That is, the linear part is treated by the Crank-Nicolson scheme and the nonlinear part is
evaluated by the explicit second order scheme in time.

Example (Navier Stokes equations The incompressible Navier Stokes equation is

~ut + ~u · ∇~u+∇p = µ∆~u+ ~f(t.x)

∇ · ~u(t) = 0

where ~u(t, x) is the velocity field and p(t, x) is the pressure and

~u · ∇~u =

 u1
∂u1
∂x1

+ u2
∂u1
∂x2

u1
∂u2
∂x1

+ u2
∂u2
∂x2

 .
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For ~ψ ∈ X = {H1
0 (Ω)d : ∇ · ~ψ = 0} ~u ∈ X satisfies

(~ut, ~ψ) + a(~u, ~ψ) + b(~u(t), ~u(t), ~ψ) = (~f(t), ~ψ)

where the bilinear form a : X ×X → R is given by

a(~u, ~ψ) =

∫
Ω

µ(∇~u,∇~ψ) dx

and the tri-linear form b : X ×X ×X → R is given by

b(~u,~v, ~ψ) =

∫
Ω

(~u · ∇~v, ~ψ) dx.

Here, we used
(∇p, ~ψ) = −(p,∇ · ~ψ) = 0 for ~ψ ∈ X.

In the case of non confomal uh /∈ X we use the mixed finite element formulation (2.19)
augmenting the pressure for the Stokes equation based on the Taylor-Hood elements.

Time-Splitting mehod One can apply the time-splitting method for mixed operators case

ut = A0u+ A1(u),

for example
ut = k∆u+ f(x, u) (nonlinear reaction)

ut = ε∆u−~b(x) · ∇u (convection dominated).

by the operator splitting

ut = k∆u and then d
dt
u(x, t) = f(x, u(x, t)) pointwise ODEs foe each x ∈ Ω

ut = k∆u and then ut +~b(x) · ∇u via the characteristic method.

5 (Abstract) Wave equation

By the Newton?s law of the motion

ρ(x)utt(x, t) = div (σ(x, t))

where ρ is the mass density and σ(x, t) is the stress. For example,

σ(x, t) = C(x)∇u(x, t) +D(x)∇ut(x, t)

for Kelvin-Vogt model, where C(x) is the compliance and D(x) is the damping rate. Let
D = 0 C(x) = 1, we have the linear wave equation

ρ(x)ut = ∆u(x, t).
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Consider the damped wave equation of the form

(ρ(x)utt, ψ) + d(ut, ψ) + a(u(t), ψ) = (f, ψ) for all ψ ∈ X, (5.1)

where ρ(x) > 0 is the mass density, a is a bilinear symmetric stiffness form and d is a bilinear
damping form on X ×X.
Example

ρ(x)utt = ∆u in Ω,
∂u

∂n
= α

∂u

∂t
at boundary ∂Ω

Since ∫
Ω

∆uψ dx =

∫
∂Ω

−αutψ ds−
∫

Ω

∇u · ∇ψ dx

we have

a(u, ψ) =

∫
Ω

∇u · ∇ψ dx, d(ut, ψ) =

∫
∂Ω

αutψ ds.

Assume a is X−coercive and d(u, u) ≥ 0. Letting ψ = ut in (5.1)∫
Ω

ρ(x)utt, ut dx+ d(ut, uu) + a(u(t)Ut) = (f, ut)

where ∫
Ω

ρ(x)utt, ut dx+ a(u(t), ut) =
d

dt
E(t)

and the total energy E is given by

E(t) =
1

2
(

∫
Ω

ρ(x)|ut(t, x)|2 dx+ a(u(t), u(t))).

Thus, we have the energy conservation:

E(t) +

∫ t

0

d(ut(s), ut(s)) ds = E(0) +

∫ t

0

(d(t), ut) dt.

For the wave equation based on the linear triangular element we obtain the fully explicit
discretization of the form

un+1
i,j − 2uni,j + un−1

i,j

∆t2
= c2

i,j (∆hu
n)i,j

where ∆h is the central difference approximation of ∆.

Von-Neumann stability analysis Let c be a constant and Ω = (0, 1)× (0, 1). It can be shown
that

ek,` = sin(
kπ

N
x1) sin(

`π

N
x2)

is an eigenvector of ∆h corresponding to the eigenvale

µk,` =
2(cos(kπ

N
)− 1) + 2(cos( `π

N
)− 1)

h2
, h =

1

N

49



In fact, it follows from

h2∆he
i kπ
N
x1ei

`π
N
x2 = (ei

kπ
N + e−i

kπ
N − 2 + ei

`π
N + e−i

`π
N − 2) ei

kπ
N
x1ei

`π
N
x2 .

For the (k, `) mode let λ be the magnification factor in time, un = λun − 1. Then

λ− 2 +
1

λ
= c2 ∆t2

h2
(2(cos(

kπ

N
)− 1) + 2(cos(

`π

N
)− 1)).

Thus, |λ| ≤ 1 (stable) provided that 4 c2 ∆t2

h2
≤ 1.

6 Concrete Examples

6.1 Scalar elliptic equation

A scalar function u(x) ∈ H1(Ω) satisfies

−∇ · (A(x)∇u) + b(x) · ∇u+ c(x)u = f.

6.2 Elastic equation

A vector function u(x) ∈ H1(Ω)n satisfies

−Div σ = ~f

where the stress tensor σ is given by

6.3 Maxwell equation

6.4 Hyperbolic systems and Conservation law

Consider the scalar conservation law

ut + (f(x, u))x = 0

The discontinuous Galelkin method is given as follows. We define a finite element space
consisting of piecewise polynomials

V k
h = {v|Ii ∈ P k(Ii), 1 ≤ i ≤ B},

where P k(Ii) denotes the set of polynomials of degree up to k defined on the cell Ii =
(xi−1/2, xi+1/2). Testing against vh ∈ V k

h we have∫
Ii

(uh)tvh dx−
∫
Ii

f(uh)(vh)x dx+ f̂i+1/2vh(xi+1/2)− f̂i−1/2vh(xi−1/2) = 0.

where f̂i+1/2 is the numerical flux, which is a single valued function defined at the cell
interfaces and in general depends on the values of the numerical solution uh from both sides
of the interface

f̂i+1/2 = f(uh(x
−
i−1/2, t), uh(x

−
i−1/2, t))

We use the so-called monotone fluxes from finite difference and finite volume schemes for
solving conservation laws, which satisfy the following conditions:
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• Consistency: f̂(u, u) = f(u).

• Continuity: f̂(u−, u+) is at least Lipschitz continuous with respect to both arguments
u− and u+.

• Monotonicity: f̂(u−, u+) is a non-decreasing function of its first argument u− and
non-increasing function of its second argument u+.

Well known monotone fluxes include the Lax-Friedrichs flux

f̂LF (u−, u+) =
1

2
(f(u−) + f(u+))− α (u+ − u−), α = max

u
|f ′(u)|

the Godunov flux

f̂LF (u−, u+) =


minu−≤u≤u+ f(u) if u− < u+

maxu+≤u≤u− f(u) if u+ ≤ u−

and the Engquist-Osher flux

f̂EO(u−, u+) =

∫ u−

0

max(f ′(u), 0) du+

∫ u+

0

∈ (f ′(u), 0) du = f(0)

6.5 Hamilton-Jacobi-Bellman equation

Consider the Hamilton-Jacobi-Bellman equation

vt +H(x, vx) = ε∆v.

7 Discontinuous Galerkin method foe Elliptic equation

We present the Discontinuous Galerkin method for

−∇ · (a(x)∇u) = f (7.1)

Let Ωh is a trigulation of Ω and let Xh be the piecewise H1(Ω), i.e.

Xh = {u ∈ H1(E) on each element E of Ωh}.

If u belongs to Xh, then the trace of u on any side of one element E is well defined. If two
elements E1 and E2 are neighbors and share one common side Γ, there are two traces of u
on Γ from the both side. We define average and jump for u. We assume that the normal
vector n is oriented from E1 to E2.

{u} =
1

2
(u|Γ− + u|Γ+), [u] = u|Γ+ − u|Γ− .

Note that for ψ ∈ Xh∫
E

−∇ · (a(x)∇uψ dx =

∫
Γ

a(x)
∂u

∂n
[ψ] +

∫
E

a(x)∇u · ∇ψ dx
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where we have continuity of the flux at Γ for the solution u
We now define the DG bilinear forms ah on Xh = H1(Ωh) by

ah(u, v) =
∑
i

∫
Ωi

a(x)∇u · ∇v dx−
∫

Γi

{an · ∇u}[v]± {an · ∇v}[u] ds

+α1

∑
i

∫
Γi

[u][v] ds+ α2

∑
i

∫
Γi

[an · ∇u][(an · ∇v] ds

where the last two terms are the penalizing jumps.

7.1 Immersed finite elements method (IFEM)

Consider (7.1) with a discontinuous a(x), i.e.,

a(x) =


β+ x ∈ Ω+

β− x ∈ Ω−.

We have the continuity condition at interface Γ

[u]Γ = 0 and [β
∂u

∂n
]Γ = 0.

Figure 14: (a) a configuration of a rectangular domain Ω = Ω+ ∪ Ω− with an interface Γ
from an IFEM test. The coefficient a(x) may have a finite jump across the interface Γ. (b)
an interface triangle and the geometry after transformed to the standard right triangle.

We construct a piecewise linear function on the triangle based on given the values at
the three vertices and that satisfies the natural jump condition. Assume that the values at
vertices A, B, and C of the element T are specified, we construct the following piecewise
linear function as in Figure 14:

u±(x) = a±0 + a±1 x1 + a±3 x2
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satisfying

u+(D) = u−(D), u+(E) = u−(E), β+ ∂

∂n
u+(M) = β−

∂

∂n
u−(M)

where n is the unit normal direction of the line segment DE. Thus, there are six constraints
and six coefficients, so we show that the solution exists and is unique.

Figure 15: (a). A standard domain of six triangles with an interface cutting through. (b).
A global basis function on its support of the non-conforming immersed finite element space.
The basis function has small jump across some edges.

8 Finite difference and Finite volume and Spectral meth-

ods in view of FEA

One can derive the standard and more advanced highbrid methods of finite difference and
finite volume method in terms of the weak formulation. The methods use the nodal values of
solution and thus one can incoorpolate the local basis function in terms of the finite element
interpolation. The error analysis can be formulated for Finite difference and Finite volume
methods in terms of Lax equivalence, e.g., stability and consistency imply the convergence.
If we use the operator splitting method, each step of the integration can be performed
independently via nodal interpolation between FEM and finite difference (volume) methods.

8.1 Elliptic System

8.2 Hyprbolic System

8.3 Hamilton-Jacobi-Beelman equation

8.4 Spectral element method via discontinuous Galerkin

9 Appendix
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