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Abstract

In recent years increasing interests and considerable researches have been given to
the fractional differential equations both in time and space variables. These are due to
the applications of the fractional differential operators to problems in a wide areas of
physics and engineering science and a rapid development of the corresponding theory.
Motivating examples include the so-called continuous time random walk process and the
Levy process model for the mathematical finance. Basset integral is appearing in the
equation of motion of a particle moving through a fluid. A fractional diffusion equation
is derived as a homogenization of heterogeneous groundwater flow. In this lecture we
develop solution methods based on the linear and nonlinear semigroup theory and
apply it to solve the corresponding inverse and optimal control problems. The theory
is applied to concrete examples including fractional diffusion equation, Navier-Stokes
equations and conservation laws. For the linear case we develop the operator theoretic
representation of solutions and the sectorial property of the fractional operator in time
is used to establish the regularity and asymptotic of the solutions. The property and
stability of the solutions as well as numerical integration methods are discussed. The
lecture also covers the basic theory and application of the so-called Crandall-Ligget
theory and the DS-approximation theory developed by Kobayashi-Kobayashi-Oharu
for evolution operator and the semi-linear theory based on the sectorial estimates of
the fractional equation.

1 Introduction

In this monograph we consider the fractional power equation of the form

o, twu’s s = Au u =z ra
Dtu_/o Ry ¥(6) ds = Au(t) + 7(0), - w(0) (L) [£

in a Banach space X, where A is an m-dissipative linear or nonlinear operator in X.
Here, Dy is the Caputo fractional derivative of order o with 0 < av < 1. Our analysis
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will focus on fractional power equations in time but A may represent the fractional
power operator in space such as fractional power Laplacean —(—A)# (also, see Section
). In general we consider equations of the form

| ot =y ds = auv) + 50). - u0) =z, (12)

where we assume g(s) > Pr is monotonically deceasing and integrable on any finite

interval (0, R). Equation (hjé) is the special case of with

t—Oé

9(t) = g1-al(t) = m (1.3) |gal

As shown in Appendix, such an equation arises in the continuous time random walk
model fqr, groundwater movement in naturally fractured heterogeneous porous
aquifers [3] and tick-by-tick dynamics of financial markets @Boussinesq (1885) and
Basset (1888) found that the force F' on an accelerating spherical particle in a viscous
fluid is given by
/
(s)

t @ —
= *D \/WPcMc/ ti_ds,

S

where D is the particle diameter, % is the material derivative, and u and v are the

ﬂu1d and particle velocity vectors, respectively. Thus, one can the Basset equation as
1/2

( w1thg—(50+kr(1/2). ie.

1
W' (t) + kD2 u= Au(t) + f(t), u(0)==.
Or, in general
1 tfa Bt
o= [
0= | e o)
where p is a positive measure on (0, 1]. The exponential decay model is

g(t) = P(I__aa) e

for some 8 > 0. Or, in general

1 -
g(t) :/0 F(f—a) e Pt dpu(B)

where fi is a positive measure on [0, 00).
Since by the change of variable t — s = —0

t 0
/Ogu—s) <>ds—/ o(— B (¢ + 0) db,

—t

we have

[ ott=ode =5 [ att=suts) ds—gu0). = & [ gtt=sul)as, (14



where we set u(s) = z, s < 0. Equivalently,

/0 g(t —s)u/(s)dx = % ; g(t — s)(u(s) —u(0)) ds.

fra
Thus, (l% 13 written as the fractional differential equation of the Riemann-Liouville
form:

d [t (t—s)@
dt J, T(1—a)

(t—s)~@

u(s)ds = Au(t) + f(t) + T(i—a)

u(0),

or
t

gt J, 9t = 9uls) —u(0)) ds = Au(t) + £(2).

£
There are several approaches to define the solution to (h—rﬁ One uses the Mitag-
Leffler function E, g(t) defined by

& A\ngno
Eap(\t) = 7;) Fna 1 5)° (1.5)

That is, E,, 1 satisfies
DYEq1(At) = ANEq1(At).

Suppose A has a spectral resolution

A6 = /C AE(N)6,

fr
then it can be shown that for f = 0 the solution to (H is given by

u(t) = /C Bar(A)dEN)z.

The other approach is the integral equation approach. Let J® be the operator
defined by

o, t(t_s)afl . .
Tpo= [ Eg—ots) ds

Then, J# D u = u(t) — z,;t > 0 and we obtain the integral equation for u;

w(t) =z + / TS as) + £(s))ds
0 I'(a) 7
Thus, one can apply the m i]glum monotone operator theory to establish the existence
and regularity of solutionsa%T4}. fr
Our approach is based on the following observation. One can write (ﬁ as the
functional differential equation

/0 g0 (t + 0) df = Au(t) + f(t), with initail value u(0) = ¢(0), 0 <0. (1.6)

where t —s = —0 < 0 and # € R~ — g(f) = g(—0) is the even extension of g
and is monotonically increasing on R~. Note that if we let ¢(0) = z, § < 0 and

fde



£d.

£
g(0) = ﬁ\ﬁ]*“, then ( { geduces to (h—rlg) That is, if & — u(t + ) is absolute

continuous, it follows from (I7 7) (see, Section 2.2 for the precise discussions) that

0 t

/ g(0)u/(t +0)db = / g(t — s)u'(s) ds.

—o0 0

We then embed the solution u(t) = z(¢,0) in the state (history) space

z2(t,0) =u(t+0) € Z = C((—o0,0], X).
fra

Then, (I ; s the Markovian form as the evolution equation in Z:
4,
dt

where the operator A(t) is defined by

A(t)p = ¢'(0), 0 € (—00,0] (1.8)

() = A(t)=(t), (1.7)

in Z with domain
0

dom (A(t)) = {6 € Z : ¢/ € Z and / 9(0)6(6) d8 = AG(0)+f(t), (0) € dom(A)}.

—00

(1.9)
Dynamics (%%% embedded in (Fﬁ?flas the non-local boundary value condition as 6 =
0% for the first order differential operator A(t). We analyze the Well—posei?ri%)s; and
the property of of solutions to (H%éased on the semigroup generated by (I.7); i.e.,
show that the solution map (z, f) € X x C(0,T;X) — u(t) € C(0,T; X) exists and
continuous. It will be shown that if A is dissipative and maximal monotone in X,
then A(t) is dissipative and maximal monotone in Z. We %l_}&r} use the semigroup
neration theory to define the solution z(t) € C(0,T; Z) to ( and the solution to
(T) By u(t) = 2(¢,0) € C(0,T;X). In this way we can defing the solution to a more
general class of equations of the form (77). In the case of (I.T) with a closed linear

operator A, we have

-5

t a—1 t — s a—1
u(t) :w+A/O (tr‘(a))u(s) ds+/0 %f(s) ds.

forallz € X and f € C(0,T; X), i.e.,

t — s a—1
/0 (tr(a))u(s) ds € C(0,T;dom (A)).

For the ¢ 50 of a cl fseéi linear operator A, we also develop PP operator theoretic
approach to (T.T) and (I). If we take the Laplace transform of (IT.

A=\l + f

and thus X
G=\T—A) T\ e+ f)

assuming A is maximal monotone. Here, for 0 < o < 1 there exists # > 0 such that

(X“T— A7 < f\fﬁ; on the sector £y = {z € C : arg(z) < g—t—@} N{z # 0}.

4



Thus, we have the representation of the solution operator u(t) = S(t)z:

1 M “1ya-1
= — “T—A @ .
S(t)x 27Ti/1“6 (A )T AT dA

where I', s be the integration path defined by

= {z€Ci 2] 26, arg(s) = £(5+9)}, To={2€C: |2 =4, larg(2)] < 2+

For t > 0 define P(t) € L(X) by

P(t)z = i / eMAYT — A) "Lz d).
r

21

Then, we have the solution representation

u(t) = S(t)x + /0 P(t—s)f(s)ds. (1.10)

We will analyze the solution properties based on this operator representation of S(t)
and P(t) and establish the regularity and asymptotic property as ¢ — oo of S(t) and
P(t). For the sectorial operator A we analyze the properties of S(t) and P(t) based on
the fractional operator calculus.

For the semilinear equation with Au = Agu + F(u), we define the mild solution by
the solution representation;

u(t) = S(t)x +/0 P(t—s)(F(u(s)+ f(s)) ds. (1.11)

where S(t), Sgg.ixre generated by Ag. We establish the existence of local and global
solutions to (T.1T) based on the properties S(t) and P(t) for the general case and the
case when Ag is a sectorial operator.

In summary the following is an outline of our presentation.

Plan of the Manuscript

fde
[1] Well-posedness of (I.6) using Cp-semigroup theory for linear case, Section 2.
fde
[2] Well-posedness of (I.6) using Crandall-Ligget theory for nonlinear monotone
graph, Section 3.
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[3] Evolution case A = A(t) using the DS-approximation theory of Kobayashi-
Kobayashi-Oharu, Section 4.

[4] Operator theoretic method and Sectorial Calculus based on the resolvent, Section
5.

olution Representations for Caputo equation an iemann-Liouville equation,
5] Solution R tati for Caput ti d Ri Li ill ti
Section 5.

Nonhomogeneous equations and Variation of constant formula, Section 6.
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Dual system, weak solutions and Control problems, Section 7

Fractional wave equations (0 < o < 2), Section 8.
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Finite Difference approximation, stability and convergence analysis, Section 9.
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[10] Local solutions to nonlinear fractional power ODEs, Section 10.
1] Local solutions to semi-linear fractional power PDEs, Section 11.

[12] Examples, fractional diffusion, conservation law, Hamilto-Jacobi and Navier-
Stokes equations, Section 12.

=
&0

Nonlocal and fractional PDEs in space, Section 13
4] Eigenvalue Problems for fractional operator, Section 14

[15] CTRM model and Fractional diffusions via homogenization, Appendix.

2 Wellposedness for a closed linear operator A

In this section we ce%%‘ L vtgiel case A is m-dissipative in a Banach space X and show
that A defined by (;.SH .9) generates the Cy-semigroup on appropriate state spaces

Z.

2.1 Weighted Z = L,(—00,0; H) state space

First, we consider A is a closed linear operator in X. Let X = H be a Hilbert space.
Let A be the linear operator defined by

Agp = ¢'(0)
on the weighted history space Z = L?](—oo, 0; H) with norm

0
62 = / 9(0) 6(0)[2 do

—0o0
with domain

0
dom (A)={¢p € Z:¢' € Z and / g(0)¢'(0) d6 = Ap(0), #(0) € dom(A)}.

—00

fra
The evolution equation (I ; for u is embedded into the non-local boundary condition
at # = 07 in the domain of the closed operator A.

Theorem 2.1. Assume A is m-dissipative. Then, A is m-dissipative, i.e.,
R\NI—A)=2Z for A>0.

Thus, A generates the Cy-semigroup on Z.

Proof: Define

For ¢ € dom(A)

(Aeb,cb)z:/ 9(9)(¢’(9)7¢(9)¢>(0))Hd9+(/ 9(0)¢'(6) db, $(0)) u,

—0o0 —00



where

0

0
/_ 9(0)(¢'(6),6(0) — $(0)) = lim 9:(0)((0), $(0) — ¢(0)) 1 db

=0t J _oo

_ 2 hm/ g(0)16(0) — 6(0)[2db <0,

2 0+

since g/(f) > 0. Since
0
(| 9(0)66) ds. 6(0)) s = (46(0). 6(0)) <0
we have (A¢, ¢)z < 0. If we define for A > 0

0
0(6) = /9 A9 f(¢) de,

then
M=y =feZ 0)=

1
and Y|z < X’f|Z Let

Since for all —-co< R<§d <0

[p(0)] <

it follows that for some M > 0

| / 0) o] < M ].
Let 0
AQ) = )\/Ooe’\gg(ﬁ) o,
Since A is m-dissipative, A — A¢ — f has the solution
¢ = —A)7"f=e9(0)+(0) € dom(A),

where

0
6(0) = (AN T — 4)~! / 4 (0)4:(6) db.

The theorem now follows from the Lumer-Phillips theorem % O

(2.1)

(2.2)

(2.3)

(2.4



2.2 State space Z = C((—o0,0]; H)
Let X = H be a Hilbert space and consider the state space
Z = C((~o0,0); H).

Define a linear operator A by

with domain
0
dom(A) = {6/ € Z:6(0) € dom(4), | g(6)6/(6) db = 46(0)}

Then,
* g(0) —g(0 —¢)

€

0
(/ 9(0)¢'(0) do, $(0)) = (/ ((0) — ¢(6)) df, $(0))

—00

0 — —€
> [ 1O=IC= D o0y - ool loco)) do

Note that

0
lim ( / 6(0)¢'(9) dB, $(0)) = (Ad(0), 6(0)) (2.6)

e—0t

t tal
Suppose |¢(0)| > |4(0)|, then it follows from (E.T%f(s. 5T that

(49(0), 9(0)) >0

which is a contradiction to the fact that A is dissipative . That is, max |¢| = |¢(6p)]
for some 6y < 0 and

[A¢ — Aglz = [A(00) — ¢'(60)|z = N |p(6o)] = Aoz
since (¢/'(6p), #(60p))r = 0. Thus, A is dissipative. Moreover, for A > 0 From (Bg%
1] <2(9(=0) + 9(=R)) ||z
and thus ¢ = e*¢(0) + ¢ € dom (A) satisfies
AN -A)p=f in Z,

where

(2.7)
0
6= (NI — A°)"1f = M9(0) + / 09 £(¢) de.0
0

Hence, we have

Theorem 2.2. Assume A is m-dissipative. Then, A is dissipative and RN —A) = Z
for A\ > 0. Thus, A generates the Cy-semigroup T(t) on Z = C((—o0,0]; H).

8



2.3 Banach space-valued solution

In this case section we discuss the case when X is a Banach space and A is m-dissipative
linear operator in X. Let X* is the dual space of X, (-, ) xxx+ denote the dual product
and F' be the duality mapping

Fa) = {a" € X7 : [(z,2")] = [a|x|z"]x-}.

Then , A is dissipative if and only if for all € dom (A) there exists a z* € F(x), the
such that
(Az,z*) <0

and we assume
range(A\l — A) = X for all A > 0.

Then we have the generation theory:

Theorem 2.3. Assume A is m-dissipative in a Banach space X. Then, A is dissipative
and RN — A) = Z for A > 0. Thys, A generates the Co-semigroup T(t) on Z =
C((—00,0]; X). Also, it follows from (2() that

(M —A)12)(0) = (AN T —A)TA0)N e (2.8)

Proof: First we show that A is dissipative. For ¢ € dom (A) suppose |¢(0)] > |¢(6)]
for all § < 0. For all 2* € F(¢(0))

0
( / 0 (0)(&')d0, ")

(6(0) - 6(0),2") < (19(6)] — [(O))I6(0)] < 0, 6 <0.
Thus, .
(| s@)ddo.a) <o (2.9)

But, since there exists a z* € F(¢(0)) such that
(Az,2%) >0

ine0
which contradicts to (bl.ngei. Thus, there exists 6y such that |¢(6p)] = |¢|z. Since
(p(0),2*) < |p(0)| for z* € F(¢(bp)), 0 — (¢(0), z*) attains the maximum at 6y and
thus (¢’ (), z*) = 0 Hence,

IAd— 'z = (Ad(00) — ¢'(0),27) = X|d(0o)| = A9z (2.10)

thm2.2
The range condition is exactly the same as the one in the proof of Theorem (bgi and
the theorem follows from the Lumer-Phillips theorem. [J

inel



2.4 Mild solution to (Hs)ég

1
Consider the case with the initial value ¢(f) = x € Z. It follows from (E.eisi that for
u>0

(I—pA) =y, ¢u(8) =z + e (6(0) — )

with 1 1
$,(0) = (A(=) T — ATA(S)z
1(0) = ( (M) ) (u)
since 0
A / MO ge — 1=
0
Note that ) )
¢u,(0) —x= (I — At Ax
g ORI
Thus,
1
A 0 0
|¢u() x’_A( )| x|x — as u —

for all x € dom(A). Since ¢, € dom(A), z, = uu(t +-) = T(t)¢, is a strong solution

to
d

%'Zu(t) = Az,(t), 2.(0) = du-
That is, u, € C*((—o0,T); X) satisfies

/g(t—S) u(s)ds = Auy(t) - / g(—t+0)¢/,(0) db.
0 —00

where
r/ —t+6)6),(6) dB)] < g(1)|$,(0) — | — 0 as 1 =+ 07
Since Df* is closed on C(0,7; X), u(t) = lim,,_,o+ u,(t) satisfies (Egﬁe),
Dfu = Au(t)
Let g* = /J_l(ﬁ), ie.,
/T (7 — )glt — 5)dt = 1. (2.11)

Thus,

/OT g*(t—s) /Otg(t—s)u/(s) ds = /OT ' (s) /ST g (T—t)g(t—s) dtds = /OT u' ds = ug)l—?;t(o

Since AT'(t) = T'(t)A, Au,(t) — Au(t) in C(0,7T; X) and the limit u(t) = lim,,_,o+ u,(t)

satisfies .
u(t) =z + A/ g*(t — s)u(s)ds. (2.13)
0

£
Since dom(A) is dense in X and u(t) € C(0,T; X) defines the mild solution to (II Fith
f=0.

10



ta—l

L(a)’
T (r — a—1 _g)@
/0 ( r(g) (1f(1 —)a) =1 (2.14)

and we have if x € dom(A), then u(t) € C(0,T;dom(A)) satisfies

f
In the case of (F%), g (t) =

ie,

(t —s)o 1

u(t) =z + A/O Wu(s) ds. (2.15)

£
for (I.rl) with f = 0.
int
Theorem 2.4. Equation (B?l?i) holds for all x € X, i.e.,

/0 9" (t — s)u(s)ds € C(0,T;dom (A)).

£
In the, cqse of (h_rﬁ if v € dom(A), thent — u(t) = S(t)x € X is absolutely continuous
and (2.15) holds for all x € X

Proof: The first assertion follows since dom (A) is dense in X and A is a closed operator
in X. The second one follows since

P Gl u(s)ds = fEos) u'(s)ds e x
u(t)—dt/o F—Au(s)d _/O Foa—Av(s) ds + s A

3 Nonlinear Monotone Equations in Banach spaces

In this section we consider a nonlinear fractional inclusion of the form

/0 g(t — s)u'(s)ds € Au(t).

Let a graph A C X x X be dissipative, i.e., for any [z;,y;] € A there exists z* €
F(x1 —x2) such that Re(y1 —y2,2*) <0, where F': X — X* the duality mapping. Or,
equivalently

| — Ay| > |z| for all A >0 and [z,y] € A.

Define A in Z = C((—o0,0]; X) by

Agp = ¢'
with domain
0
dom(A) = {¢' € Z : $(0) € dom(A), / g(0)¢'(0) df € Ap(0)}.
Theorem 3.1. Assume A is dissipative and Range(A I — A) for all sufficiently small

A > 0. Then, A is dissipative and Range(AI — A) = Z for all sufficiently small A > 0.
Thus A generates the nonlinear semigroup of contraction on Z.

11



Proof: For ¢1, ¢2 € dom (A) suppose |¢1(0) — ¢2(0)] > [¢1(6) — ¢2(0)| for all 6 < 0.
For all z* € F(¢1(0) — ¢2(0))

0
( /_ 0(0)(&, — 90, 2*)

€

0 —g(0—¢
= ([ HOIOZ 1416) — 200) — (41(0) — 200 0 < 0
(91(0)—2(0)—(¢1(0)—92(0), 2%) < (|¢1(8)—¢2(0)|—[¢1(0)—¢2(0))])[¢1(0)—2(0)| <0, 6 <O0.
Thus,
0
(| a0)6 ~ éav.a) <. (31) [z
But, since for y; € A¢1(0), y2 € Apa(0) there exists a * € F(¢1(0) — ¢2(0)) such that
(y1 —y2,27) > 0

which contradicts to (%11% Thus, there exists 0y such that |¢1(00) —p2(00)| = |p1—d2|z
and thus (¢'(0y),z*) = 0 for all z* € F(¢1(00) — ¢2(00)). Thus,

A1 — d2) — (¢ — @5)|z > (A (@1(60) — d2(60)) — (¢1(00) — D5(00)), =)

@2

= A|p1(00) — d2(60)| = A |d1 — @2z

For the range condition
0
ro—d'=f [ g@d®)ds < A0(0)
we have ¢ = e*¢(0) 4 ¢ and

0
A(N)$)(0) — / 9(0)0(0) d6 € A(0)

where v is defined by (FZ]) Since A is m-dissipative,

0
6(0) = (AN T — A)! / 9(0)'(6) d

—00

exits and range(A ] — A) = Z. Thus, the theorem follows from the Carandall and
Ligget theorem [2]. [J

3.1 Cone preserving

Let C be a closed cone in X and A is cone preserving, i.e.,
(I-sA)~ccc

for all s > 0..

12



Theorem 3.2. A is cone preserving and T(t)C C C.

Proof: From

6= (I —pA) " f =en’s(0) + ¥(0)

" w»wm%—mlq@’@wmm
Ry Y
_ L0 ey
w@—ﬂé £(€) de

Thus, since ¢’ > 0 if f € C, then ¢ € C. O

4 Nonlinear Fractional Evolution Equations

In this section we consider the case of a class of nonlinear evolution operators A = A(t)
for (77). Let X be a Banach space.

DY — /0 ot — s)u'(s) ds € A@t)u(t), u(0) = =. (4.1)

We assume a family of dissipative operators A(t) C X x X, t € [0, T satisfy dom (A(t)) =
X. Define the operator A(t) in Z = C((—o0,0]; X) by

At)p = ¢’
with domain .
dom (A(t)) = { /_ N 9(0)¢'(0) db € A(t)$(0)}.
For A > 0 define the resolvent
It)z= T -NAt) ‘2, z2€2
and ¢; = Jy(A(t;))z. Then, 1 = ¢ — ¢y € Z satisfies

1

A(x)lb(o) = Y1 — Y2

for y; € A(ti)¢i(0). We assume there exist a continuous function f :[0,7] — X and a
constant L > 0 such that

[W(O)] < AL f(t1) — f(t2)]- (4.2)
Since A1) — 1)’ = 0, it follows from (Pfﬁgthat
[Ax(t1)z = Ax(t2)z] S A*TLIf(1) = f(t2), (4.3)

where the Yoshida approximation Ay (t1) is defined by
1
Ax(ti)z = X(J)\(ti)z —2).

13



For A > 0 let {2} be the sequence generated by
2 =I5, 2 =¢¢cZ

That is, the product formula z,i‘ = II1", J\(t;)z defines an approximation sequence and

satisfies

T2y Ia(ti)z1 — T2y Ja(te) 22| < [21 — zaf. (4.4)

cont
From (%i)
An(E) 2] = [ANED At 20| < AN 204
< AN )2 | AL f() = )l

If we assume f is of bounded variation on [0, T}, then, for

ar, = [Ax(te)zhl,  be = LIF(t2) — f(ta_1)]

we have
ap = ap_1 + )\ailbk

and thus
AA(tR)] < MoA*! (4.5)
for all k£ and A.
Let A=27" 4 =27 and N = 2™"" with té =kA. For 1< j < N define éé‘NH
by
Ang = Ju(t?iJrl)N)éfNJrjfl'
It follows from (% that
’ZfNﬂ' - QZHNH’ < |Zz'“N+j—1 - 25N+j—1| + “a‘f(té+1)N) - f(t?N+j)|L'

If we assume f is Holder continuous with order 1 — « + , v > 0, then

N

D () = flEdvgg)) < A2mnom,

j=1
Define the piecewise constant functions by

2u(t) = zinyy Zu(t) = 2y for t € [tingj tingj+1)-

Then,
|2u(t) — 2u(t)] < 2=m=n L), (4.6)

It follows from Theorem 5.3 (Crandall-Liggett theorem) that
|2A(1) = 2u(1)] < CA AN )z . (4.7)
t
It thus follows from (E?Zii that

2alt) = 2u(0)] < O X (48)

errl lerr2
Hence, from (4.6)—(4.8) we have

l2a(t) — 2, (t)| < 20V m=@ma)n pra 4 e < O\

14



. 2—«
ifm<
-~

n. Let us define the sequence {my} by

mi_1], Mo =n.

Then, by induction in k
|20 (8) = 2y (B)] < C 2791,

l—a+vy

where pui = 27, Since mp — mp_1 > T
-

mo > 0,

|20 = Zpo| < MA®

for some M > 0 and thus {z)}, A\ = 27" is a Cauchy sequenc o (gonsequently,
z(t) = limy_,¢ exits in C(0,7;Z) which defines the solution to (1.I) with z(0) =
¢ € dom(A(0)) and

|z (t) — 2(t)| < M.

It follows from (E%)%that
|Zl(t) — Zg(t)‘ < |¢51 — ¢2’ for ¢1, ¢2 € dom (A((O))

1
and dom (A(0)) is dense in Z, (bnol Fhas the unique mild solution for all x € X. In
summary we have

Theorem 4.1. Assume (A2) and f is of bounded variation and Hélder continuous of
order 1 —a++, v >0 on [0,T]. Then,

2(t) = lim I 7 (8)2(0)
A—=0
exits for all z(0) € X. Moreover,
2(H) = 2(0)] < C A

for z(0) € dom(A(0)).

: . . &hi@ . .
The followings are specific cases for which Theorem H.1. applies. Assume A(t) is of
the form
A(t)u = Au+ g(t, u),

where A is a monotone graph and u — ¢(¢,u) is a montone operator. If
lg(t1,u) — g(ta,u)[x < L|f(t1) — ft2)| (1 + |ulx)

A.
then, condition (&FZ% holds.
Assume for ¢ > 0

|A(0)A(t)z — A(t)A(0)z| < clal.

(4.9)

[A(t)x — A(tz)x| < [f(t1) — f(t2)[|A(0)x].

15



For F(t)z = A(0)A(t)z — A(t)A(0)z we have
DIA(0)z = A(t)A0)a(t) + F(t)a(t).
Thus, if A(0)(0) € X, one can show that there exists M > 0 such that
|A0)z(t)] < M, te]o,T). (4.10)
Since 4(0) = ¢1(0) — ¢2(0) € X satisfies
AA)P(0) = A(t2)¥(0) + (A(t1) — A(t2))¢1(0),
it follows from (#7)—(110) that condition (¥%) holds.
5 Operator Theoretic Representation

In this section we develop the solution representation for the linear equation;

/0 gt — $)u'(s) = Aut) + F(£),  u(0) = = (5.1)

Assume that A is a closed densely defined linear operator A in the Banach space X
and there exist M > 1 and wg € R such that

M
|(>\I — A)ily < m for all Re )\WO. (52)
— WO

For example, (%§2§) holds if A generates a Cy semigroup of G(M,wy) type on X. Define
the Yoshida approximation 4, € £(X) of A by

Ay =A(I —pA)™" for puwg < 1. (5.3)

Then, A, € £(X) and consider the equation

t
| st = 90its) s = A0+ 50). wif0) =
Taking the Laplace transform of the equation, we obtain

ANy, — AT ANz = Ay, + f,

and thus R
= (AN T —A) T IANTANz + (AN T - A,)7 .

Let f = 0. Since Reco(4,) < < v, we have

1 — pwo

1 y+ioco
u,(t) = Su(t)r = — AN — A)TIATTAN)z d

21 ~—i00

Note that
ANANT AP =T+ (ANT—-A)A (5.4)

16

Bou

Cap



and in general

n—1
ANANT = A=Y AN FA (AN T - A)TTAN) A" (5.5) [ser

k=0

Since ico At
y+ioco
L / =1
211 ~N—ico
and .
y+i00
/ INTTAN) T dA < oo,
y—100

we have

|S(t)] < M |Az],
uniformly in g > 0. Since from (b.4)

AMNANH AN T —A) = % + AT AN T - AT
if L(A(N)71) = g* we have
t
uu(t) =o+ / g (t—s)ALS,(s)xds.
0
Moreover, since
_ 1. _ AT D L -1 =142
(AN T —-A) 2 —(ANT-A) "z 1+MA()\)(VI A7 (AN T —A) A,
where v = _ A {u,(t)} is Cauchy in C(0,T; X) provided that x € dom(A3)
1 _l_ ,LLA()\) 9 2 ) ) .

Letting u — 0T, we obtain

Theorem 5.1. For x € dom(A?)

u(t) = S(t)x = i, /WOO MANT — AN TTAN) 2z dA

u(t) =z + /0 g (t — s)AS(s)z ds.

Corollary 5.1. For x € dom(A"2),

n—1

1

270 )y _ioo

(5.6)

u(t) = S(t)r = a+ Y L7 NTAN) ) A / T AR T-A) A A A d,
Y

k=1

(5.7)

x where L71(+) is the inverse Laplace transform. In the case of the Caputo (g = g1 =

o
ra —oz))

1

y+ioco
Str=Y ——— A+ — / eMNYT — A)TINTIT ARy g,
Y

T'(ka+1) 2

—100

17



and

u(t) =z + /0 (t;S)a_AS(t)x da.

(@)
Se
Proof: The first assertion follows from (b%) For the Caputo case A(A\) = A* and
tafl
)= =—. O

5.1 Riemann-Liouville equation

In this section we consider the Riemann-Liouville equation
t

pr g(t — s)u(s)ds = Au(t) + f(t) (5.8)
0
with

( /0 g(t - s)u(s) ds)(0*) = y.

Taking the Laplace transform, we have
ANa=y+Au+f

and thus

= (AN - 4) " (y+ f) (5.9) [Lap

Note that
AMN(AN)T — A)_1 =TI+ (AN)I - A)_lA

Let the linear operator P(t)

P(t)y = —— /F AN — Ay,

- 2mi
. La;
for y € dom(A). Hence, using the same arguments as above, from (%&) we have;

Theorem 5.2. The solution to (5.8) is given by
t
u(t) = P(t)y + / P(t—s)f(s)ds
0
for y € dom(A) and f € L*(0,T;dom(A), and for the case of fractional derivative

g=ag9 :7|9|—a )
T —a)

n—1 a 100
P(t)y - Z L Aky 4 i /'er e)xt()\ozf _ A)fl)\fna A"y d.
— I'ka+ «) 2mi J,

—100

for y € dom(A™+?).

18



Proof: The second assertion follows from

1 y+ioco tozfl
— ATdN =
21

y—100

and the fact that
NT—A)lz= "2+ \T-A) 1\

and by induction

(AT — A) g =@ nzl (;i)k + T — At (;ﬁ)nm.m

k=0

c
Similarly, for (E)gf) the solution is given by
t
u@y—S@M%%/ﬁP@——ﬁf@ﬁk (5.10) [Sol
0

for € dom(A?) and f € C(),T; X)

Corollary 5.2.

Proof: The first assertion follows from the fact that
MNNT—A) =T+ M1 —-A)A

The second one follows simply follows from

1 y+ioco
S(t)e = — NN T — A) e d
27TZ ~—i00
and
~1ya-1y — ot 0
L7 ) = )’

5.2 Sectorial Calculus and Asymptotic Estimates

Let a closed and densely defined linear operator A satisfy

(AT — A)7Y g% for all Re A > 0 (5.11)
Assume there exits « € (0, 1) such that for 0 < ¢; < ¢y < 00
1 (A < JAN)| < e |]AY],  ReA > wp. (5.12)
We recall A(X) = \¢ for
e
9=091-a = F(|1|—o¢)



Then, for 0 < a < 1 there exists g > 0 such that

(AN T — A7 < %z on Y9 ={z¢€ C:arg(z) < g+90}ﬂ{z7§0}

since

ReX® > |\|® cos(af) for X = |Ale®.
Let I'y s be the integration path defined by

I ={2eC:lz| 26 arg() = i(%+9)}, To={z€C:[z] =4, |arg(z)| < g+9}

for some § > 0 and 0 < 6§ < #y. Then, the solution map S(t) : v € X — u(t) € X is
given by

Sz = —— [ AN T — A LA 2 d), (5.13)

_27TZ T

resl
using the Cauchy integral representation (%6’) and the analytic continuation. On I'+
At -1 -1 M —rsinft
e (AN T —A) AN < —e
r
for A = r(cos(0) +isin(@)), r > J. On I'y
At -1 -1 M dsingt
e (AN T —A)7TTANA | < 5 €

R
for A = d0(cos(¢) + isin(¢)), |¢| < § + 0. Hence (%el%) holds for all z € X. Let
P(t) € £(X), t > 0 be

P(t)z = % /F AN T — Atz d)

Since

AN (AN T - A =T+ AANT - A
if x € dom(A), then u(t) = S(t)z € C(0,T; X) for x € dom(A) satisfies

d 1 . _ B
5z = o A AN T — A)TAN)zd\ = P(t) Az

and if g* = L71(A(A)71), then
g (t)P(t)x € C(0,T; X).
For x € X and f € C(0,T;X) we have (E_OTIO)
u(t) = S(t)x —i—/o P(t—s)f(s)ds

Ca
for the solution to (H

20



Theorem 5.3. Assume 0 € p(A). Then, for some C > 0

d c
as(t)»ﬂ < N |z,
P(ta] < -2 Jal,
AS(t)e = QLM /F M(AMN) T — A)‘lA()\)2§ - A(A)%)xdk

Proof: Since 0 € p(A), one can let 6 = 0 for the integral path I" and

IAMN(ANT—A) | <MonT.

Thus,
o0
— [ e I— A~ T < — L A .
1 )\tA)\ A IA)\ d\ M rsi 9td
2mi Jr T Jo msinft
P(t)] = |21,/e”(A()\) L\ < / pae=rsindt g o M ~T(1-a)(sinf 1) .0
™ Jr

5.3 Caputo equation and Inverse inequality
Consider the case when

(t—s)"

gt —s5) =gi-a(t —s) = Ti—a)

Theorem 5.4. Fort > 0 R(S(
—1

injective, then R(S(t)) = R(A

i;)) R(A™Y). If R(A™Y) is pre-compact and S(t) is

Proof: Since

AN T — A = A (AT — A) o (5.14)

we have
1 1
A - Aty20—1 ozI_A—l _ Ty =Kx — gi_q
S(t)e %dAeA (T = )70 A gt = K g1 alt)e

where 1

Kr=— / MNOTH AT — A) e dA

27 T

Then, R(S(t)) C R(A™1). Since

AK = i, / X3\ — Al d) —
271 T

t72a

I'(l-2a) € LX),

if R(A™1) is pre-compact, K is a compact operator. Moreover, if S(t) is injective, then
it follows from the Fredholm alternative theorem that R(S(t)) = R(A71). O

21



Corollary 5.3. Fort >0

t—ka

1
R = A OO S R O (5.15)
— Oé

211 T

M

k=1

For t > 0 sufficiently large AS(t) = K — gi—o(t) I € L(X) is bounded invertible, i.e,
there exits a constant c such that

|z| < c|AS(t)z|.
Moreover, for x € X .
1S()z] ~ F(f—a) 1A "2,
Proof: Equation (Ere?%ollows from
n—1
ATAT = AT = X AT — A)TE = kR,
k=0

Thus, g1« (t)—|K| > 0 for sufficiently large t > 0. and |(g1_o(t) I —K) 7| < (g1-a(t)—
[K[)~

Similarly, we have

Corollary 5.4. Fort >0

M —«
ASO)] < f— !

= 4—(=a)
[P(t)] < ()t

|AP(t)] < Mt™1

Moreover, assume A is a sectorial operator, i.e., there exist M > 0, 6y > 0 such that

M
(21— A)7Y < m on g, ={z € C: arg(z) §g+90}ﬂ{z750}

Then,
APx = / MeI—-A)
r
and for0 < <1
M

APPO)] < frarpa- (5.16)

E
Proof: It follows from (%914) The last assertion uses |APz| < M |Az|®|z|'=# for
x € dom(A). O
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5.4 Basset equation
Consider the Basset equation
u'(t) + kDS u = Au(t) + f(t), u(0) = =x.

In this case
AN) = A+ kX~

R
Assume A a sectorial operator so that (%elg) holds. Since
AAN) = ATINTIAN) = (AN — A TINTTAN? -1+ kAT

we have

AS(t)r = Kz — kgi—o(t)z,

where )
Kr=_—— / NTTANEHAWN T — A) Lz dA
2mi Jr

Moreover, we have the estimate:
|K| < M((tsin@) ™' + kT'(a)(tsin §) ).

thm5.4
Thus, if A~! is compact, Theorem %.ZI holds.

6 Series Solution

Define the operator:

o, t(t_s)afl o) ds
spo= [ Mot

Since J!*J® = J}, we have

DpJPé=¢ and JED6 =6 - 4(0).

£
Thus, (h—rﬁ is equivalently written as
t (t _ 8)&—1
u(t :az—}—/ ——————Au(s) ds
0 =a+ [ i)
Thus,
t _ a—1
S(t)x =z + A/O (tl_‘(i)é)S(sM fis.

Since Au € C(0,T; H) for 2 € dom(A) it follows from (61 that

lim ult) — @ = 1 Ax
t—0t+ te F(Oz + 1)

one has the first order approximation

tOé
R Yy

23
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Moreover, we have

1
i u(t) —x — 7F(a+1)Ax B 1 e
t—0+ t2a CT(2a+1)

we look for an second order approximation of the form

u(t) ~ (I 4+ bt AN+ c1t* Az

with ] 1
—bh=——— b —h = —————
AT T T+ YT T a1y
Thus, we obtain
b I'a+1) 1 I(a+1)
= - Cl1 = — .
"Tr@a+1) VT Dla+1) T(a+1)

In general we can find the Pade(n,n) approximation of the form
n n
ut) ~ (3 bpth AT+ agthe ARz
k=0 k=1

That is, since
1

00
Eml(At) = ch)\k:tja, Cj = —0—.
= I(ja+1)

we have . .
O ) (3 est9) = 3 art®
k=0 =0 £=0

in term by term, i.e.,

l
ag:ZbkCg_k, 0</<n+n.
k=0

Thus, {by} satisfies

Cn  Cp—1 ... Co bo an
Cn+1 Cp—1 ... C1 b1 0
Cnt4n Cn—1 .. Cpn bn, 0

Next, we consider the series expansion in terms of the resolvent (A% I — A)~!. The
Post-Widder inversion theory is given as:

Theorem 6.1. Let u(t) be a X-valued continuous function on t > 0 such that u(t) =
O(e) ast — oo for some vy and 4 be the Laplace transform of u(t). Then,

u(t) = lim

RO T,

uniformly on any compact sets of t > 0.
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Theorem 6.2. If A generates a Cy semigroup on X, then

oy (A TNT— A = (1) DA (n+1) Z B i AT — A)~HE
where by, are given by the recurrence
g,n - (?’L —1- ka)bg,n—l + Od(k - 1)bg—1,n—17 1<k< n, n = 2
with by =1 and by, =0, k> n, and
n+l

S(t)x = lim Zb,mJrl ) A) kg

Nn—00 n‘
where the convergence is uniform on bounded intervals of t > 0.

Proof: By induction in n we have

8 a— [e% n TL n+1 (0% e
e O AT = A7) = (1A S (0 A

Since by, > 0 for a € (0,1), we have

" a— «a G a—n— @ —
‘6)\”()\ AT =A< E bt AT T = A) TR
n+l ka—n—1 mn a—1
Z 5 oA
<M bkn—l—l k :M<_1) 3)\”()\0‘—00)
w)

Since

Y —w

on ae—1 0 nl
(D)) = /0 e ME, () dt < C —

)\a—l o)
= / e MEq 1 (t) dt,
0

since Eqy 1 (wt®) < Ceul. Thus,

a" n!
AT — A <CM ——F—
O O R R TR e e
Since u(t) = S(t)x is continuous function on t > 0 and u(t) = O(e" as t — oo, the
theorem follows from the Post-Widder inversion theory. [J

Similarly, we have

Corollary 6.1.

d -1 . ta_l - k « 4 o —(k+1)
P(t) = —S(HA™" = lim — Zﬁbk,m (I= ()" 4) .

k=1

25



where the convergence is uniform on bounded intervals of t > 0. The solution to (27)
s given by

u(t) = S(t)x + /0 P(t—s)f(s)ds.

Corollary 6.2. For For the Caputo equation with A € L(X)

N o A
S(t) = Ean(At*) =) Tna+1)
0

and
0 Angne

P(t) = t* ' Bao(At*) =t ) ——————
o I'(na+ a)

7 Nonhomogeneous equation

Consider the nonhomogeneous equation

/0 g(t — s)u/(s)ds = Au(t) + f(t), u(0)=0 (7.1)

Suppose u € 112%&0, 00, X) be a solution. Then, it is unique and satisfies the Laplace
transform of (I7.

A~

(AT — A)yi = f. (7.2)

It follows from Theorem 2.3 that A generates the Cy semigroup T'(t), t > 0 on Z =
C((—o0); X).

Theorem 7.1. For w > 0 we define the operator
T, = e (A - Aw) )7 € L(X, Z)
and define
u(t) = <(A —wl) /O T UL f(s) ds> (0). (7.3)
Then, (%eﬁnes the solution to ()’?.hlg%iff € C%0,T; X).

Proof: Note that
t
z2(t) =(A—-wl) / T(t—s)¥,f(s)ds
0

=T ()W, f(0) — W, f(t) —|—/0 T(t—s)W¥,f(s)ds — w/o T(t—s)¥,f(s)ds

7.4)
1
and thus, z € C(0,T;Z) and z(t) = u(t + -). Taking the Laplace transform of ( ¥ )
we obtain

2N = (A—w DA = A7 (V)

~

= ()‘ - w)(/\j - A)ilqlwf()‘) - \Ilwf()‘)

26
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1
Since from (%%Si and

0 0
(A=A (0) = —(AN T = A) H(Aw) I - A)_l/ g(0) (e — /\/ MO8k dg)
—00 6

= (AT — A)"YAW) T — A)~

Thus we have

and the claim holds. OJ
When 0 € p(A), we let w =0 and obtain

ult) = S(H)A™£(0) /St—s “Lpr(s
t t (7.5)
= / S(t—s)A7 f(s)ds = / P(t—s)f(s)ds,
0 0
for f € W(0,T; X), since
S = %S(t) = P(t)A.

Otherwise, for w > 0 let y(t) = e~ “*u(t). It can be easily seen that y satisfies

/_ gt — $)e )y () ds = —w / gt — $)e= =)y (s) ds + Ay(t) + e~ (1)

—00

with y(s) =0, s <0. Since

t t
/0 ge(t — $)e =)/ (5) ds = / (6Lt — 5) — w et — 5))e= ) (y(s) — (1)) dt,

— 00

we have

t

(A(w) I — A)y(t) — lim gLt — 8)e ) (y(t) — y(s)) ds = e L f(t)

e—0t J_oo

Suppose |y(t)| = maxs<7 |y(s)| we have

(Alw) I = A)y(t),z™) < e (f(t),27)

for z* € F(y(t)) since g/ <0 on R* and

(y(t) —y(s),2™) = (ly(®)] = ly(s)DIy(2)| = 0.

Since A is dissipative we have

ly(®)] < [A(w) e [ f(1)]. (7.6) [est
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Cheorem 7.2. For f € C(0,T; ; X) there exists a unique solution u in C(0,T;X) to
(; 1Y)

and it has the representation (?.55

/Pt—s

lu(t)] < M| flego.ex)

and for some M >

Proof: Since C?(0,T; X) is dense in C(0,T; X) and A is closed, the theorem follows

from (% .

7.1 fe L*0,T;H)

Let X = H be a Hilbert space. Since for R > T and 0 <t < T and C*(0,T; H),

0

/ gt —s)(u/(s),u(s) —u(t)) ds = / g(=0) (' (t + 0),u(t + 0) — u(t)) dd
t—R

-R

1

0
= 2(/_3 9 (=O)|u(t +0) — u(t)]* df — g(R)|u(t) — u(0)|*)

and

t 0
/ g(t = s)(W(s),u(s)) ds = / 9(=0)(w/(t +0), u(t + 0)) do
t—R

-R

—‘“/0 (—0)|u(t + 0)|* do
“at2 ) 7 ’

it follows from

/) Y /0 (s (s) ds, u(t)) dt /O ' /0 () (W (), u(t)—u(s)) dsdi+ /O ' / gt—s) (). u

that

0
2 152
/_R()|u(T—|—9|d0 / 0)||2 d6

T 0
+/ </ S Olult 1 6) — u() b+ g(—R)|z — u(®)]?) dt

_2/ / (t — ) (s) ds, u(t)) dt.

Letting R — T, we obtain

0
2 .%'2
/_T()|u(T—|—9|d0 / 0)|xf2 do

+/OT(/(19/(¢9)|U(75+9)—u(t)|2d0—|—g(T)|x—u dt_2// (t— s)u

Thus, we have

28
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3 . en. 1 2 3 X t
Theorem 7.3. The energy identity (?.815 holds for allu € L*(0,T; H) satisfying [, g(t—
s)u'(s)ds € L*(0,T; H) and for all u(0) = 0.

/OT(/O ot — sy (s) ds, u(t)) dt > g(T |/ ()2 dt).

Assume that there exists w > 0 such that

(Ad, ) < —w MQ, for all ¢ € dom (A). (7.9)

homO
Suppose f(0) = 0 and f € C’Qe(jg)éll; H) it follows from (ni.Somi that v € C*(0,T; H) N
C(0,T;dom(A)). Then, from (77)

0
u 2 .’/UQ
/_T()|(T+9|de / 0)||2 6

1 T
/ / O)lu(t+0) = u(t) -+ 9(T) |0 — u(t) +eofult)) e < = [ 70 .

Otherwise, using exactly the same arguments as for the estimate for C'(0,7; H), we
have

/0 9(0)e“’|y(T + 0)> o

// "(t — 5)e )|y (s) — Pdsdt+w// (t — s)e )|y (s)|? ds dt

T
" /0 (A(w) T — 24)y(t), y(t)) dt = 2 /0 (e £ (1), (1)) dt

Hence there exits Mt such that

T T
| wrae< v [1sop (7.10)

Bl e

Consequently, we have

(’nlf}gncl)rem 7.4. For f € L*(0,T; H) gloen(g exists a unique solutz’o(erItlL in L2(0,T; H) to

and it has the representation (1.5) and the energy identity

Proof: S;C%cze C?(0,T : H) is dense in L?(0,T; H) and A is closed, the theorem follows

from (%

Corollary 7.1. Assume there exist a closed subspace V' of H and 6 > 0 such that

(Ag,¢) < —3 o[}

h
Then, for f € L?(0,T; H) 1&]11061%“8 exists a unique solution u in L?(0,T;V) to (?.Iomi and
it has the representation (?.Si and the energy identity

[z as <} [ e

Vo ds.
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8 Dual System and Optimal Control Problems

f£d
In this section we consider the dual system to (ﬁ and its application to a class of
optimal control problems.
Let X = H be a Hilbert space. For u, p € C*(0,T; H) we have

/oT(/Ot g(t — s)u/(s) ds, p(t)) dt = /OT</ST9(t — s)u(t) dt, '(s)) ds

T T T
=), [ atrean — [ e L [ o= on0dds

T T T T
= (/0 9(T — s)u(s) ds,p(T)) _(U(O)’/o g9(t)p(t) dt)—/o (U(S),/ g(t — s)p'(t) dt) ds.
(8.1)
Theorem 8.1. Let D} : L?(0,T; H) — L?(0,T; H) be
t
(Dtu)(®) = [ glt = sy (5)ds
0
with domain
dom (DY) = {u € L*(0,T; H) : DJu € L*(0,T; H), u(0") =0}
Then, D is a densely defined, closed operator on L?(0,T; H) and the adjoint (DJ)* is
given by

T
(DD =4 [ ol =y

with domain
T
dom (DY) = {p € O3 H): [ glt = o)ty € H'(0,7:X),
T S
(| (e~ sweyan) = oy
Proof: Since for g* € L1(0,T) is defined by (Eﬁll) and from (E%OZ)
u(t) = /0 g (t — s)(Dju)ds,
D7 is closed. For y = (D{)*u,
T T T
| o= [y a)as

and - ~, - ,

/0 (D{u, p(t)) dt :/0 (/S g(t — s)p(t) dt, u'(s)) ds.
Since u € dom (D7) are arbitrary,

T T
/ g(t —s)p(t)dt = / y(t)dt, forae. s€ (0,T).
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Hence, we obtain

T
lim( / g(t — s)p(t) dt) =

st
and
y(s) = — / (t — s)p(t) dt.O
]%_ggnition 7.1 (Weak solution) A function u € L?(0,T; H) is a weak solution to
( if

T
/ / (t— s/ () dt + Ap(s), u(s)) + (p(s), () ds — (u(0), /0 g(t)p(t) dt) = 0

(8.2)
for all p € C1(0,T; H) N C(0, T; dom(A*)) satisfying p(T) = 0.
fd
Theorem 8.2. Weak solutio to(ﬁ s unique
thm6 . 3
Proof: It follows from Theorem I7. at the dual system
T
[ ot =W @ dt = 4'p(s) + 1), p(T) =0 (53

has a solution p € C1(0,T; H) € C(0;T;dom(A*) for all f € C1(0,T; H) with f(T) =
Since iré € CY0,T; H) with f(T) = 0 is dense in L?(0,T; H) the uniqueness follows

from (ﬁ O

Consider the control problem
T
min / (@) + h(u(t)) dt, (8.4)
0
fd
subject to (ﬁ7

/0 g(t — s)2'(s) ds = Au(t) + Bu(t), z(0) = 2°, (8.5)

where z(t) € X, a Hilbert space and A is a maximal monotone operator in X Let U
be a Hilbert space and U is a closed convex set in U and

weC={ueL*0,T;U):ult)eU, ae.}

denote the control function and B € L£(U, X). The functional ¢ and h are convex on
X and U, respectively.

cost |conts
Theorem 8.3. Problem (%fﬁ(%éi has an optimal control u* € C.

conts
Proof: Since given u € C (%515 has a unique solution z(-;u) € C(0,T;X). Thus, the
optimal control problem is equivalent to minimizing

T
J(u) = /0 (Ca(t; w) + B(u(t))) dt
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over u € C. Suppose u, € C is a minimizing sequence of J over C, i.e. J(u,) | and
lim,, o0 J(up) = n = infyec J(u). Then there exists a weak convergent subsequence
f (n,2n) to (u”,2") in L2(0,T;U x X). Sigcget(; is weakly closed, u* € C. From

we
(8.2) it follows that z* is a weak solution of (8.5) corresponding to u*. Since convex

functionals are weakly sequentially lower semi-continuous, J(u*) < 7, i.e., u* € C is
optimal. [J

Let 0¢(z*) be the sub-differential of ¢ at z* € X, i.e.
oH(x*)={re X" l(x) —Ll(z") > (N x—z¥) for all x € X}.

Define the Lagrange functional

L(z,u,p) = /OT(E(JU(S)) + h(u(s))ds + /OT(p(s),Aa:(s) + Bu(s) — (D{x)(s)) ds.

Theorem 8.4. Let u* € C be an optimal to problem (E.%Eﬁ(}'ghoﬁnd assume £ is CL.
Then,
h(u) + (u, B*p(t)) > h(u*(t)) + (u*(t), Bp(t)) for allu € U, a.e. t € (0,T)
where the adjoint state satisfies
(DY) = Ap(t) + (2" (), p(T) =0.  36)

Proof: Since ¢ (z*) € C(0,T;X) there exists a unique solution to (%%%OLet u =

k(v —u’) € C with v € C and ¢ € (0,1) and 2 be the corresponding solution of
E 515 to u. Note that

(¢ (). x—a") = (DY) p—A'p,a—a") = (p, DY (z—a") — Alw—a")) = (p, Blu—u")).

Then,
T
0< J(u) — J*) = /O (E(x(s),27(s)) + (€(z"(5)), x(s) — 2™ (s)) ds
(8.7)
T
4 [ (a(s) = 1l (9) + (0(0) Bluts) — w*())) ds
0
where
E(x,2*) = l(z) — 0(z*) — 0'(z")(z — z¥).
Since

T
- x(s),x"(s))ds as +
t/o E(a(s),"(s)) ds — 0 as t - 0

Since h is convex,

T T
/0 (h(U(S))h(u*(S))Hp(S)vB(U(S)u*(S)))dSSt/O (h(v(s))=h(u"(s))+(p(s), B(v(s)—u*(s)) ds,
Now, since

/ E(x *(s))ds = 0ast— 0"

letting ¢ — 0% in %;) we obtain

T
/0 (h(v(s)) = h(u"(s)) + (p(2), B(v(s) — u™(s)) ds = 0

for all v € C, which implies the necessary optimality. [
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9 Case:l<a<?

In this section we consider the case when 1 < a < 2;

t
Difu = /0 Go—a(t — s)u"(s)ds = Au(t) + f(t),, u(0=ug, u'(0)= vy,

or in general

/0 g(t —s)u"(s)ds = Au(t) + f(t), u(0=wug, u'(0)= vo. (9.1)

Equivalently, we have

ot [ gl ) ds = )+ 70

with
u(0) =ug, v(0) = vp.

Assume — A is self-adjoint and positive on a Hilbert space H and define
V = dom((—A)7) with [} = (—Ad, ¢).
Define a linear operator A on X =V x Lg(—oo, 0; H) by
A(u, 2) = (2(0), 2)

with
0
dom(A) ={(u,z) € X : A(u,z) € X and / 9(0)2'(0) = Au}.

—0o0

Theorem 9.1. The linear operator A is m-dissipative and A generates a C se 1group
T(t) on X. u(t) = (T(t)(uo,v0))1 € C(0,T;V) defines a mild solution to (%27%1

Proof: For (u,z) € dom(A)

(A(u, 2), (u, 2)) = (—Au, 2(0) + [ 9(0)(2'(0), () do

From (Ezlag

0 - —€
(A(U7 2)7 (U,Z)) — _ lim 9(9) 9(9 )) |Z(9) o Z(O)‘Z d9,

e—=0t J _oo €
and thus 0
(A(w, 2), (u,2)) = —/_ g'(0)|2(8) — 2(0)[* d6 < 0.

For the resolvent

)\(U,Z) _A(uvz) = (flaf2)
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is equivalent to
Az—2' = f2 du—2z(0)=fl.

From the first equation
0
(0) = M3(0) + [ 00 de (92)
[%

and
0

A / " 00(0)d6)=(0) + /

—00 —0o0

0
g(0)( /9 AED f2(¢) de — £2(0)) ds = Au.

From the second equation
0 0
uw=AAN) T —A)" (AN f + / g(0)(f*(6) — X /9 P00 F2(€) dg)do)  (9.3)

and

2(0) = Au — fL. (9.4)
Thus, RAI - A)=X. O
Resl
It follows from (beﬂ that u(t) = Sy (t)u + Sa(t)v with

y+ioco
Si(t)u = % / MAAN) T — A)TLAN)udA
Tt Jy—ico
y (9.5)
1 Y+100
Syt = — MAAN) T — A)—lﬂudx
211 A

y—1i00

Assume A is a sectorial operator, i.e., there exist M > 0, 6y > 0 such that

(AT — A < f‘f' on g, = {A € O rarg(V) < 5 + 60} 1 {A £ 0)

Assume that if A € Xy, then AA(X) € X; for 0 > 0. Let I'g s be the integration path
defined by

I*={z€C: A 20, arg\) = £(5+N)}, To={z€C:[z| =6, larg(z)| < 5 +6}

for some 6 > 0 and 0 < @ < 6. Then, the solution map S;(t) and S(t) is given by

Si(t)x = % /F MAANT — A)TTAN)z d),
Sy(t)z = 2%” /F MOAN T — A) LAz d),

5012
using the Cauchy integral representation (bgt and the analytic continuation. Let
P(t) e L(X), t >0 be

P(t)x = % /F MAAN) T — A) "Lz d.
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Then p
S51(1) = P(1)A
al-

and the solution u(t) to (I2.4) is given by

u(t) = S1(t)ug + S2(t)vo + /Ot P(t—s)f(s)ds

for up, vo € X and f € C(0,T; X).

10 Finite Difference Method

In this section we develop the finite difference scheme for (Elﬁg and analyze the stability
and the convergence of the scheme for a general class of (II.
operators A.

Let h > 0 be a stepsize and define

with maximal monotone

jh
gjz/ g(s)ds, j<0
—(j+1)h

The sequence {uf, j < 0} approximating u(kh, —jh) € X is generated by

= (10.1)

That is,

= = (10.2)

d
approximates au(t + ) = Au(t + -). Note that

ué“ = uf ™ =
dif
Thus, (HU‘l) is equivalent to
Wbkt TED kg ke
—t ) g T Auk ot fE (10.3)
j=—1

fde
which is an approximation for (W directly. We have the following stability results for
dif
(T0.1);

Theorem 10.1. If A is dissipative, for f = 0 we have |uf| < |z|. In general we assume
that for all u € dom(A), there u* € F(u) such that

(Au,u*) < =6 |u)?, (10.4)
then
b < & max | Y
a — .
03%3%’ — § 0<k<N
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Proof:For f = 0 since

—(k-1) —(k=2)

Uj — Uj— i—1 — gj
S g S I iy ), (10.5
j=0 J=0

dif
it follows from (&(l)‘l) that for u* € F(uf)

—(k—2)

* gj—1 — gy *
<AU’5aU ) =— Z JTJ((qu,U ) — |U§ 2)~
§=0

Suppose |ug| > |u;], 7 < 0 then
—(k—2)
* 95 — gj-1
(g ) > 30 B IL g2 kg > 0
=0

which contradicts to the fact that A is dissipative. Thus, (Iinz%x]q) |u | <maxj<o |u 1.
In general, suppose |u*| > |u/| for 0 < j < N. From (

—(Aug, u*) < |ug]]f¥|

ccnd
for u* € F(uf) and thus from (17 )
1
k k
< — .
jubl < < 1
Hence we obtain
W < % max |
max - .
0<k<N ~ § 0<k<N

Assume X = H is a Hilbert space.

Theorem 10.2. Assume for 6 >0

(Ag, ¢) < —6[¢*, ¢ € dom(A).

Forallk >1
—(k—1) E —(—2) gi—g k —(k—1) 1 k
gy
S ey Y B I s S < Y gylefs Y
j=0 (=1 j=0 (=0 j=0 =1
(10.6)
dif
Proof: From (Ili.5ji
k k—1 k k
uf —ui q 1 _ uy —uj_; 1
(%a 5(“;‘ +U§ 1)) = 2(|Uk| | f 1’2) = (%a 5(“? +U§71))7
where
—(k—1) k k —(k—2)
ui —ui_ 1 1 9j—1— 9j
Z g (———"— h ! a§(uf +U§—1) - U’S) =3 Z %W?H - “’5“\2}1-
j=0 Jj=0



dif
Since from (Hcln)
Wtk
Z.%(%ﬂulg) = (Aulg + fkaulg)7

J<0

summing this over k we obtain

—(k—1) E —(—2) —(k-1) k
Z gj|u?|2+z Z 95— 9i-1 g] 1 E —uf|?h = Z gﬂxﬁ—i—QZ(Auﬁ—Ff{ué)h
§=0 =1 j=0 §=0 =1

Hence, from the assumption we obtain the desired estimate. [J
Now, we have the convergence results;

Theorem 10.3. We assume
(Azy — Az, z*) < =6 |z — 29|% (10.7)

for some x* € F(x1 — x2). Define the linear interpolation

t—kh

Un(t) = u(kh) + (u(kh) —u((k — 1)h)) ift € (k — 1)h, kh].

Then,
”U,h — Uh’LQ(O,T;H) -0 ash—0".
Proof: If we let U'-€ =U((k—j)h) =u((k — j)h), then we have

U"f —(k—1) k k

WG X g st (109)

where

EF = /0 g(0) (' (kh +0) — U'(kh6)) do — 0
—kh

Let X = H be a Hilbert space. The, we have

N
SIEPh—0 ash— 0t
)

If we define

t — kh
up(t) = u® + - (uP —uP 1Y) ift € (k—1)h, kh)

t dif
then it follows from (FF(SJT% and (I(li.éh that

1
lun, — Unlr2(0,1;0) — 5 |Enlr2(0,m36) — 0

ash — 0. O
In general, let X be a Banach space and then we have;

Corollary 10.1.
|uh - Uh|C(O,T;X) —0, ash— 0+7

dif
assuming (I(l).%i and f € C(0,T;X).
. dif for
Proof: Using the same arguments as above, from ( U.ij) and (IT0.8) we have

[un — Unlego,rx) < !Eh\COTX)—H)D
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10.1 Cone invariance and Maximum Principle

Let H = L?(2) and C be a a closed cone in H. A is cone preserving, i.e.,
(I-sA)~ccc
for all sufficiently small s > 0. Since

—(k—2)

h . _ 95— Gj—1 pai  h9—r—1)
=(I-—A"! AT W 0 4 fR
( % )~ ( Z % " f)

By induction in k, we have u* € C if u® € C and f* € C.
Let C={pe H:¢p>0a.e. }Then,ukZOa.e. if u® >0 and f* > 0.

11 Semi-linear equations
In this section we consider the semilinear equation
Dix = Ax(t) + F(x(t)), =(0)=xo
or equivalently
x(t) = S(t)xo + /Ot P(t—s)F(x(s))ds, t >0 (11.1) |Lip
with the locally Lipschitz function F' in X. Assume
1S(t)] < 4(t) = Cmin(1,¢t7%), |P(t)| < Cmin(t~ 1T, ¢71).

and that F'(0) = 0 and

|F(z) = F(y)| < p(M) |z —y| for |z], [y| < M. (11.2)
For given f € C(0,T; X) consider the map from C(0, 00, X) to C(0,00; X) by
t
(Va)(t) = F(0) + [ Plt=s)F(a(s)) ds (11.3)
0

First, we establish the local existence of solutions.

Theorem Lo 1 Existence) Assume |f(t)| < Mp(1+t*). Then, there exists a 7 > 0
such that ( l I ?fi has a fixed point z € C(0,7; X).

Proof: For |z(t)| < M on [0, 7] for some M > 2M, we have

tOl
|/ (t—s)F ds|</C’ 1+O‘Mp(M)d5§C’M,O(M)E
Let 7 = 7(Mp) is chosen so that

(67

Mo(1+7%) + CMp(M) —— < M, (11.4) [tau
(6%
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con
given My > 0. It follows from (

[(Wa1)(t) — (Pa2)(t)] < Cp(M)gll‘l = Talc(0,mx)

for |z1], |x2| < M. Thus, ¥ has a unique fixed point z € C(0,7; X) satisfying [z(t)| <
M, t € [0, 7], provided that (II.4) holds, since Cp(M)Z- < 1. O

Hence, given t > 0 for h > 0

t t+h
x(t+h)=S({t+h)xo+ /0 P(t+h—s)F(z(s)) + /t P(t+h—s)F(z(s))ds

h
= f(t+h)+ /O P(h — 0)F(z(t + o)) do

fixed
has a unique solution z(t + h), 0 < h < 7 as a fixed point to (lll X?§) with
t
ft+h)= S(t—i—h)a?o—i-/ P(t+h—s)F(xz(s))ds,; h>0
0

provided that f(t + h) < Mp(1 + h*) and some M.
Next, we establish a priori bound of z(t). Assume z € M min(1,{~%) for some
M > 0 and that
p(s)s =s7.

We will use
1

/0 (t— S)_1+68_6 ds = 7”1 — T 0)

y/Pt—s (s) ds|

for 0 <6 < 1. Let

Fort <1 .
MY
) < MV/ Ot — sy gs = CM
0 (0%
For1<t<2
/ Ot —s) "M s ds + / CM(t—s)" 1T ds
<CM7[(t—1)* —t*+ ! 0= )]
- 'l —a)l(«)
Fort > 2

t t—1 1
I(t) < Ot —s) 1T MYs™7%) ds + Ot — ) T M7s™ 7 ds + / Ot —s) M7 ds
t—1 1 0

SOMY[(t=1)77% + 5 MY+ (t— 1)~ 1)t

)T ( 9)
with 6 = a(y —1). It thus follows that there exists § independent of ¢ > 0 such that

I(t) < BOM” min(1,¢™%)
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It can be proved that if My > 0 is sufficiently small there exists M > 0 such that

My + BCM" < M. (11.5)

Theorem (Asymptotic Stability) Assume p(s)s = s and condition (CI '5) holds.
Then, (l [1) has a unique solution in C(0, co; X) satisfying |x(¢)| < M min(1,¢7%).

Proof: Using exactly the same arguments as above, without loss of the generality with
same [ > 0 we have
|\I’l’1 — \I’JIQ‘ < ﬁCM’Yil’xl — 1?2‘.

The claim follows since SCMY~1 < 1. O

11.1 Sectorial Case

Assume there exits aq, as > 0 such that
AT (F(z) — F(y)| < p(M) [A**(x — y)| for [A%z], [A%y] < M. (11.6)

and
|[ATF(0)|x <ec. (11.7)

with 0 < a1 + ag < 1. Let X,, = dom(A*?). For u € C([0, 7], X4,) define the map
t
(T(u))(t) = S(t)zo —I—/ P(t — s)F(u(s)) ds.
0

i
Theorem 11.1. (Local Existence) For xg € X, there exists a 7 > 0 such (&%)h(zs a
unique solution u € C(0,7; X,,).

5.4
Proof: For u(0, 7, X,,) satisfying |u| < M on [0, 7] it follows from Corollary %C.Ozlrfﬁat

A% ()] = |S()]| A% 0] + | [£A™+02 Pt — 5) A= F(u(s)) ds].
< |40y +/0 C(t — 5) B (p(M)M + ¢) ds

<A + (5B pDM + 0

where = a (1 — (a1 + a2)). Let 7 = 7(My) such that

My + TP (p(MYM 4+ ¢) < M

C
1-p
1
given My = |A“2xg|. It follows from (CI i nbs) that

[ A% (W (u1) = W(ug))| < 7' p(M) | A% (ur — u2))|

C
1-5
Thus, ¥ has a unique fixed ppint in z € C(0,7, X,,) satisfying |A*2z(t)| < M on [0, 7],
which defines a solution to (HIEI) O
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12 Examples

In this section we discuss the application of our theory for concrete examples.

12.1 Fractional Parabolic equations

Let Q is a bounded open set in R%. Consider the fractional parabolic equation

Diu =V - (a(x)Vu) + b(z) - Vu+ f(x,u), (12.1)

where u € C([0,7] x ) and f : R? x R — R is locally Lipschitz function. Define the
second order elliptic operator

Au = V(a(x)Vu) + b(z) - Vu

with a € R™*? ¢ C1(Q) is symmetric and positive definite and b € C(2). The linear
operator A with
dom (A) = {u € C*(Q) N H}(Q)}

is dissipative in X = C(Q). In fact, if u({p) > |u| for (p € Q, then (Vu)(¢p) = 0 and
H(zp) <0. and

(Au)(Co) = tra(Co)H (Co) + (V-a+b) - (Vu)(¢p) <0

where H;j = g, ;; is the Hessian of u. Similarly, if u(¢p) < [u[, then (Au)(¢o) > 0.
Define the nonlinear operator by

(F(u))(z) = f(z,u(z))
We assume f(0) =0 and

F@) = FW)| < pM) [z —y| for [a], |yl < M. (12.2) [assm]

b
Then, (CI i nk'g) is satisfied and it follows from Theorem that (iaZ.ri ) has a local in time
solution u € C(]0,7] x Q). Moreover, if f(z,u)u < 0, then the solution u is global in
time and |u(t)|x < |ug|x.

12.2 Fractional Scalar conservation law

In this section we consider the scalar conservation law

Dfu+ (f(u)z + fo(z,u) =0, t>0 u(z,0) =up(x), z € R (12.3)
where f: R — R%is C'. Let X = L'(R?) and define

Au = —(f(u))a)
where we assume fy = 0 for the sake of simplicity of our presentation. Define
Ap = ¢'(0)

with domain

0
dom(A) = { | g(0)6/(6)db = 46(0)).

—00
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Let
C={peZ:¢>0}.

Since Ac = 0 for all constant ¢, it follows that
p—ceC=I-XA)p—ceC.

Similarly,
c—peC=c—(IT-NA'pecC.

Thus, without loss of generality, one can assume f is bounded. Let p € C?(R) b
a monotonically increasing function satisfying p(0) = 0 and p(x) = sgn(x), |z| > 1
Note that

—(f(u1)e = f(u2)z, plur —u2)) = (f(u1) — f(u2), p'(u1 — u2) (u1 — u2)z),

= (1, p'(u1 — u2) (u1 — u2)z(u1 — ug)),

where

1
n= / fulug + 7 (ug — ug)) dr.
If we define ¥(z) = [ op/(0) do, then
(n (w1 — u2), p'(ur — ug) (w1 — uz)g) = —(¥(wr — uz), Ny)
where u; = ug + 7 (u; — ug) and
1
Nx = /0 (fxu(sv Z, u‘r) + fuu(Sa z, uT)(uT>33) dr.

Define pc(x) = p(%) for € > 0. Then

Uy — u2

(1 (w1 — u2), peur — ug) (ur — uz)a)| = € (Y( )s ) < constelngy =0

€

as € — 0. Note that for u € L'(RY)

(u, pe(u)) = |u| and (¥, pe(u)) — (¢, sgno(u)) for ¥ € L'(R?)

as € — 0. Thus,
(Auy — Aug, sgno(u; —ug)) <0

and A is monotone. It is show in % that
range(AI — A) = X,
i.e., for any g € X there exists an entropy solution satisfying

(sign(u — k)(Au — g), ) < (sing(u — k)(f(u) = f(K)), ¥z)

for all vy € C}(R?) and k € R. Hence A has a maximal monotone extension in L!(R?).
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12.3 Fractional Hamilton-Jacobi equation

Let u is a solution to a scalar conservation in R!, then v = i ¥ w dx satisfies the fractional
Hamilton-Jacobi equation
Dfv + f(vg) = 0.

Let X = Co(RY) and
Av=—f(v;) dom(A) = {f(vy) € X}
Then, for vy, vy € C(le)
(A(v1 = v2),000) = —(f((v1)e(20)) — f((v2)e(20))) =0
where xg € R™ such that |v|x = |v(zo)|. It also can be proved H% that
range(A\I — A) = X for A > 0.

That is, there exists a unique viscosity solution to A\v — f(v;) = g; for all ¢ € C*(€Q) if
v — ¢ attains a local maximum at xo € R?, then

Av(zo) = g(xo) + f(¢z(z0)) <0

and if v — ¢ attains a local minimum at zq € R%, then

Av(zo) — g(zo) + f(Pz(0)) > 0.

12.4 Fractional Semilinear wave equation

In this section we consider the fractional semilinear wave equation of the form;

Do (s)ds = Agu(t) + F(u(t)), u(0=wug, u'(0)=vp. (12.4) |a1-2

=
S~—

Let — Ag be a positive self-adjoint operator on a Hilbert space H. V = dom(—(Ao)

12.5 Fractional Navier Stokes

In this section we discuss a fractional incompressible Navier Stokes equation
Dfu+u-Vu+gradp = v Au
(12.5)

divu =0

where u is the velocity field defined on domain €2 with Lipschitz boundary I" and p is

the pressure. Let V be the divergence free closed subspace of H{()¢:

V ={ue H{(Q)?: divu = 0}
and X be the closure of V with respect to L%(Q2)? norm:

X ={uecH}(M:divu=0, n-=0at I'}
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Let P be the orthogonal projection of L?(€2)? onto X and define the Stokes operator
—A by
—Au = PAu with dom (A) = HX(Q)NV

and the convection
F(u)=—P(u-Vu) forueV

NS
Then, (&25) is equivalently written as
Dfu = Au+ F(u).

The Stokes operator — A is positive self-adjoint operator X with dom ((—A)Y/?) = V.
Moreover,

|F(u) — F(u)lv_, ,, < clu—vlv(Julv +[v]v),

1
where V} 9 = dom((—Né)l/‘l and thus (CI i 07 is satisfied with a1 = 1, ag = 5. It follows
from Theorem that (b5) has a local solution u € C(0,7,V) in time, satisfying

u(t) = S(t)a + / P(t — s)F(u(s)) ds.

13 Space varying model

In this section we consider space varying cases;
Case 1 (Space varying fraction 0 < a(x) < 1)

/Ot m ds € Au(z,t) + f(1). (13.1)

Case 2 (Space varying weight 0 < g(z, s))

/ ww(x, s)ds +/ g(z,t — s)u’(a:, s)ds € Au(z,t) + f(t). (13.2)
o I'(l—a) 0

Assume X is a Banach space and A C X x X is dissipative. Let Z = C'(—o00,0]; X)
and Az = 2/(f) in Z For Case 1 define g(z,0) = |8]~** for z € Q and 6 € (0, —c0).
For Case 2 assume s — g(z, s) is decreasing for every z € Q and set g(x,0) = go(|0]) +
g(z,]0|) Note that § — g(z,0) is monotonically increasing for every x € Q. Define

0
dom(A) = {7’ € Z, z(0) € dom(A) and / g(z,0)7' (x,0) € Az(0)
—00
Using exactly the same arguments as for Theorem 3.1, 141 elg 1maxi |_Ionotone in Z
and generate a nonlinear semigroup on Z. Thus Both (I3.T) and (13.2) has a unique
mild solution v € C(0,T; X).
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14 Fractional equations in Space

In this section we consider the nonlocal diffusion equation of the form

u = Au = J(2)(u(x + 2) — u(z)) dz.
Rd

Or, equivalently
Au = / J(2)(u(z + 2z) — 2u(x) + u(z — 2)) dz
(R)4)+
for the symmetric kernel J in R. It will be shown that
uda = [ [ TGl + )~ u@)(ole + ) - (@) dxdo
R J(R))*

and thus A has a maximum extension.
Also, the nonlocal Fourier law is given by

Au =V - (/Rd J(2)Vu(z + z) dz).

Thus,

(Au, @)r2 = /Rded J(2)Vu(x + z) - Vo(x) dz dzx

Under the kernel J is completely monotone, one can prove that A is a maximal mono-
tone extension.

14.1 Jump diffusion Model for American option

In this section we discuss the American option for the jump diffusion model
2 2.2
o o°x
ut + (z — ?)ux + ?um—i—Bu—k)\ =0, u(T,x)=1,
(>\7U—¢):07 )‘§07 UZl/)
where the generator B for the jump process is given by

Bu = /_00 E(s)(u(x + s) —u(x) + (e® — 1)uy) ds.

The CMGY model for the jump kernel k is given by

Ce Msl|s|'HY = kF(s)  s>0
k(s) = {
Ce Clsl|s|1 Y = k= (s) s<0
Since
/_00 E(s)(u(x 4+ s) —u(x)ds = /000 Et(s)(u(z + s) — u(z)) ds + /000 E~(s)(u(x — s) —u(z))ds

2

_/OOkJr('S)—i_k_(S)(u(x—i-s)—2u(x)+u(:):—s))ds+/ooM(u(m—l—s)—u(:p—s))ds.
0 0
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Thus,

| et +9) - u(w) ds)oda
/ / u(e + 5) — w(@)($(x + 5) — B(s)) ds d

where
(s (s S)—K (S8
) = AT R k()
and hence
(Buo) = [ [ kol +s)  u@) o + ) - o(s) dsdo
—i—/ (/ Ey(s)(u(x 4+ s) — u(s)))o(x) dx+w/oo Uy dx.
where

w= /OO (e* — 1)k(s) ds.

—00

If we equip V = H'(R) by

|uv—/ / s)u(x + s) —u(zx )|2dsdw+/ |ug|? da,

then A+ B € L(V,V*) and A + B generates the analytic semigroup on X = L%(R).

14.2 Numerical approximation of nonlocal operator

In this section we describe our higher order integration method for the convolution;

o0 Lt+(g —(s ® kT (s) =k (s
| ) 2utwy s dst [T -t ds.

For the symmetric part,

/oo Ph(s) u(x +s) — 2us(2x) + u(z — s) ds,

— 00
where we have

ul\xr S) — 2ulx u\xr — S 32

S

We apply the fourth order approximation of uy, by
u(z +h) —2u(x) +u(@—h) 1 u(@+2h) —4u(x) + 6u(z) — 4u(z — h) + u(z — 2h)

U () ~ 12 12 B2
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and we apply the second order approximation of uyyq:(2) by

u(z + 2h) — 4u(z) + 6u(zr) — 4u(xr — h) + u(x — 2h)

Thus, one can approximate

h
/2 ha(s) u(x +s) — 2u(2w) +u(x — s) ds
_h s
2
by
(Uk:—i-l —2up +up—1 1 upyo — dupg + Gup —Aupg + Uk—Q)
po h2 12 h2
P1 Ukg2 — g + 6up — dup—1 + up—2
12 h? ’
where
h h
= 52k()d d 1 54k()d
PO = _gs sls)as an p1—h2 _ES s(s)ds
2 2

The remaining part of the convolution

(k+3)h
/ w(xptj + 9)ks(s) ds
(k=3)h

can be approximated by three point quadrature rule based on

2
S n

w(@nty +8) ~ u(@pey) + 0 (@rg)s + o (The)

with
Uk+j+1 — Uk+j—1
U (Thyg) ~ 57
" Uktj+1 — 2Upj + Ukt j—1
U (warj) ~ h2 .
That is,
(k+3)h
/ w(Zpyj + s)ks(s)ds
(h=1)h
k o Uktj—1 — Ukdj1 | Wbkl — 2Upqj + Ujpp—1
~ PoUk+j + P1 5 + P2 5
where



For the skew-symmetric integral

[ ko)l +9) = ul = ) ds ~ o) + 220 ()

[Ny

where

%2k d ! %23k d
pg/g sky(s) ds, 3= 13 ) $°ky(s) ds.
We may use the forth order difference approximation
u(z+h)—u(x—h) ulz+2h)—2u(z+h)+2u(zr—h)—u(z—2h)
Ua(®) ~ 2h N 6h

and the second order difference approximation

w(x + 2h) — 2u(x + h) 4+ 2u(x — h) — u(x — 2h)
h3

and obtain
(/i%@ﬂﬂx+@—u@—5»%

Up1 — Up—1 k2 — 2Upy + 2up—1 — Uk—l) 4 P3 Ukt ~ 2up11 + 2up—1 — up—1
2h 6h 6 h '

~ pa (

15 Eigenvalue Problems for Fractional Opera-
tors

In this section we consider the eigenvalue problem for the fractional differential oper-
ator. Given the potential function g € L*°(0, 1) consider the eigenvalue problem

_ t(t_s)iauus s U = \u
Ao — /O (s)ds + q(t)u(t) = Au(t)

Il -—a)
with
dom (A) = {u € H(0,1) : v’ € dom(DS) with u(0) = u(1) = 0}.

Since

L, B U R
L] Ers@asewa= [ ([ s ow o) d

o l(t_s)_a -y o b . 1U/Si l(t_s)_a

~w ()| ien ) —vo [ mesema- [ v [ Ersma

1 —_5) @ 1 —a 1 2 1 —5) @
o[ FrSemana) v [ i sewd [ue g [T e

the adjoint operator of A is given by

1 —5) @
ao=—4 [ ST Saw i asio)
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with

1 (t _ 8)70[

Tl = oy PO dt € H20,1) N H3(0, 1)}

dom (A*) = {6 € L2(0,1) /

S

(t—s)~@

_ L . N 1 1~ B 1 , )
— {6€ HY(0,1): 6(1) = 0; /0 el = / Fl @ e m0.1))

I(1-a)

Thus, dom (A) # dom (A*) and A is not self-adjoint. Note that
1
(6.4°0) = [ (s)Do s
With zero extension of ¢ to we have
1
| d@piods = [w) i)
0

where gﬁ is the Fourier transform of ¢.
We develop a numerical method that approximates A and A* simultaneously. It is
based on the Legendre-tau method []. We use the Legendre approximation

N
aV(t) = up Ly(2t — 1)
k=0

where Ly(-) is the k-th Legendre polynomial on [—1,1]. The boundary condition
uN(0) = u™ (1) = 0 implies

UN = — Z Uk, UN—1 = Z UL (15.1) Leg
k:even k:odd
if N is even and
Uy = — Z Up, UN_1 = Z U, (15.2)
k:odd k:even

if N is odd. Thus, {uk}g:_oQ defines the approximations

N—

uN =" ug Ly(2t - 1)

k=0

[\

and
aV =uN +UuUn—1 LN_1(2t — 1) + un LN(Qt — 1).

L L
where uy_1 and uy are defined by (ﬁg.gl)f(lg.%). The Legendre-tau approximation
AN - X2 5 XN=2 i5 defined by

ANyN = pN=Z AqN
where PV=2 is the orthogonal projection of L?(0,1) onto

N-2
XN ={ue L20,1);u =) up Lp(2t — 1)}
k=0
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That is,
1 ' t (t— S)fa N
(AVUN), = /0 L2t —1) <— /O T @) ds+q(t)uN(t)> n

Since (V)" € XN=2 for ¢!V € XN—2

1 1 —«
(ANuN,¢N)=/O (aN)"(PNZ/ u<z>N(t)dt+ﬁN,1LN,1(25—1)+5NLN(25—1))

'l —a)

where we let

== > B Bva=-)_ B

k:even k:odd

~ 1(t—8)a N-2
PN2</S 7F(1—a) ) 2 Br Li(2s — 1).

0

and

It thus follows that (A*)Y € £(XV=2 XV~2) is given by

1 —a
(AN N = Ll <PN_2/ u¢>N(t) dt + By_1Ly_1(25s — 1) + BnLn(2s — 1)) +PN=2(g(s)pN).

ds? 'l —a)

16 Appendix: Derivation

Let us consider the continuous time random walk (CTRW) process z(t) on R which
is characterized by the joint probability density function (pdf) ¢(&,7) of jumps £ =
x(t;) — x(tj—1) and waiting times 7; = t; — t;_;. We assume jumps and waiting times
are independent, i.e., ¢ = A(§)¥(7). The jump pdf (&) represents the pdf of jump
size £ and the waiting time pdf ¢ (7) represents the pdf of waiting time 7. Thus,

/Ot o(r) dr

gives the probability tat at least one jump is taken in (0, ).

\Ilt)zl—/o (1) dr

defines the probability of no jump occurs during (0,%]. Let us denote by p(z,t) the
pdf of reaching to position z after time ¢, i.e. p(x,0) = §(z). The master equation of
CTRW is given by

p(z,t) = 0(z)¥(t) + /Ot Yt —t) /Oo M — 2 )p(2',t) da'dt’. (16.1)

CTR
Taking the Laplace transform in ¢ and the Fourier transform in x of (IG.E ), we obtain
the Montroll-Weiss equation

p(k, s) = ) - : (16.2)



In order to derive an evolution equation of Fokker-Planck-Kolmogorov type we rewrite
(16.2) as

() (sp(k, 5) — 1) = (Mk) — 1)p(k, 5), (16.3)
where N .
bloy_ L) ) ()
sip(s) — P(s)  1—sU(s)
CTRW1
Taking the inverse transforms of (I6.§ J, we obtain the evolution equation for p;
t o 00
/ Ot — s)ap(x, s)ds = —p(z,t) + / Mz — 2" )p(a,t) da’, (16.4)
0 —00
where .
Y
a(t) = £ ()
1—s¥(s)
and

U(t) :/0 O(t — s)i(s) ds.

If &(s) =1 and thus ¢(t) = ¥(t) = et it reduces to the Kolmogorov-Feller equation
8 > / / /
Gt = =0+ [ A (o) da'
If we assume A is symmetric,
w4 [ Mo - a0 de’ = [T A+ s) - 2p(a) + o 5)) ds
oo 0
and thus

| U A0+ 9~ 20(0) + pla = ) dsi(o) o
0

-/ S / T (pla + 5) — p(@) (@ + 5) — (x)) d.
0 —00

Hence, the right hand side defines a self-adjoint nonnegative definite operator A on
L*(R).

17 Fractional diffusion equation via Homoge-
nization

In this section we discuss an example of fractional diffusion equation which is derived
by the homogenization method. is presented. This method uses a small parameter
which measures the characteristic length of the period (i.e. of the heterogeneities)
compared to a macroscopic length. In Section 3, the classical

o1



Consider a diffusive mass transport of chemical specifies through a rigid porous
saturated composite, consisting of tow porous materials;

f; =V (DE)Vetb(2)e) (17.1)

where we assume the periodic diffusive media D(%2) and the periodic advection b(%)
with period € and they are given by

D(y) = €*Da x0,(y) + D1 xa, (v),  b(y) = €*ba xa, (y) + b1 X, (¥),

Here subdomains 2; and €2, are for each composite and are disjoint and
QU =0,19=0 T=0,n0.

Here € > 0 is a small parameter which measures the characteristic length of the period
of the heterogeneities compared to a macroscopic length. the heterogeneity reflects
that Q; is a diffusive (fluid) medium and Qs is a less diffusive (solid) medium with
ration €2. Tt follows from [Auriault&Lewandowka] that the homogenized equation as
€ —7 is given by
t
ﬁgi@/ﬂ K(t—s)%ds:v-(Deﬁchrbeffc), (17.2)

where
1 .

L(K)z(lffd:@ Q(lfk)dy

and the Y —periodic k satisfies
V- (DaVyk)=pk—1), y€Qy k=0atT,

lhomo3

and D and bog are defined by (T7. homd
In what follows we give a sketch of the derivation of (I7.2). Let y = £ and assume
the expansion;

c] = c(l)(x,y,t) + ec%(x,y,t) + €2 c%(x,y,t) 4+ ...

cy = cg(x,y,t) + ec%(x,y,t) + €2 c%(x, Yy, t)+ -

odel
Substituting this into (f 7.1) and using the calculus;
1
Ve(z,y,t) = Vac(z,y,t) + =Vyc(z, y,t)
€

and taking the Laplace transform of the resulting equation in time, it results in the
following order terms.
€2 order:

V, (D1V,&) =0, ycQ and n-(D1V,&)=0, yeT (17.3)

e~1 order:

Vy (D1V2) +6180) + Vi - (D1V, &) + Vy, - (D1V6) =0, y €y

(17.4)

n- (D1Vyel + D1V, + 5,89 =0, yeT
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eV order:

Vi (D1V2d +018)) + Vo - (D1Vyel) + Vg - (D1Vel + 0161) + V- (D1V,e2) = pé), ye

n- (D1Vyé} + DVge + bié}) =n- (DV,ye3), y el
175)
Vy - (D2V,y&) = péy, y € Da. (17.6)
der- der-1
From (E’ITBG{_E% = ¢é(x,p) in which (z,p) acts as the parameter. Thus, from (E’%?F)L

we have

and

Uy (DY@ + 0189) + 4V, - (D1V,el) =0, ye

n - (Dlvyé% + Dlvxég + blé(l]) =0, yeTl
and for ¢ € H;l)er(Y) we have

o . :
/Q (D1V,é1,V § ax / 1)ij aw & /Q bi, Vi) dy (17.7) [id1
1 J 1

Let Y — periodic functions w®, v €€ H'(Qy) satisfy

/(; (Dlvywka quvb) = - /Q (Dlek7 Vydj) dy
1 1 (17.8)
/ (Dlvyva VW) = - / (bb Vyw) dy
QU 1951

idl
for all ¢ € Hper(Y). It follows from (le 77) that
Zw W5, 001 o(y) & + (e, ). (17.9)
k
der0-2
From (Ol r7.6eri

Vy (DaVy (3 —&) =p(&y—¢+é), &—¢é=0atT,

and thus R
= (1- k), (17.10)

where Y —periodic function k satisfies
Vy - (DaVyk)=pk—1), y€Qy, k=0onT.

order0O-1
Integrating (II7.5) with respect to y on €21, we obtain

Ve (D1Ve& + 01 &) dy + Vx-(Dlvyé})dy+/n-(DQég)ds=p|Ql|é

1941 1 T
homo1
From (
1 . . . . .
@( A Vo (D1Ve& +b1&) dy + A Vi - (D1Vyé1) dy) = V(Do Vit + begé)
1 1
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where

1 ow
D :/ Di(Iy; + ——)d

1
boff = 7 (b1 + D1Vv) dy.
9] Jo,

der0-2
From (ol 76) and ( 071.110(%

1 . 1 - .
IQ/Fn-(Dgcg)ds:—m’/Q p(1—k)dyeé
1

Hence we obtain

1 . Q
€ Jo, |€2]

L. . homQ
which implies (7.

If 4 =1 — k we have
Dy At =pu

u=1 atT

For Qo = {|r| < o} in R? the radial solution @ = a(r) satisfies
(ru)” = pru(r)

Thus,
a(r) = o sinh(,/pr)
r sinh(,/pro)

and )
4mrg 47rg

(a)y = 7 coth(y/pro) — P

In general, from (FE%Q) by the divergence theory

W[ 0.
p<u>—/rayud8.

2
i+ A = pi

Since at z* € T

ov
and 4 =1 on I', we have
82
W’UJ — K %U = pu,
where k is the curvature of I at *. It can be shown that
0 .
—UuU ~
ov VP

for p >> 1, since
0~ eVPE=T)Y gt g% e T,

o4

(7.11)

(17.12)



EREINE

g =

M

Thus, for p >> 1

and

0
It thus follows from (iO?I.HZ) that

Q1] 0 Il 1
‘|Q‘Btc+ “Q"ch =V - (DegVe+boge).
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