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Abstract

In recent years increasing interests and considerable researches have been given to
the fractional differential equations both in time and space variables. These are due to
the applications of the fractional differential operators to problems in a wide areas of
physics and engineering science and a rapid development of the corresponding theory.
Motivating examples include the so-called continuous time random walk process and the
Levy process model for the mathematical finance. Basset integral is appearing in the
equation of motion of a particle moving through a fluid. A fractional diffusion equation
is derived as a homogenization of heterogeneous groundwater flow. In this lecture we
develop solution methods based on the linear and nonlinear semigroup theory and
apply it to solve the corresponding inverse and optimal control problems. The theory
is applied to concrete examples including fractional diffusion equation, Navier-Stokes
equations and conservation laws. For the linear case we develop the operator theoretic
representation of solutions and the sectorial property of the fractional operator in time
is used to establish the regularity and asymptotic of the solutions. The property and
stability of the solutions as well as numerical integration methods are discussed. The
lecture also covers the basic theory and application of the so-called Crandall-Ligget
theory and the DS-approximation theory developed by Kobayashi-Kobayashi-Oharu
for evolution operator and the semi-linear theory based on the sectorial estimates of
the fractional equation.

1 Introduction

In this monograph we consider the fractional power equation of the form

Dα
t u =

∫ t

0

(t− s)−α

Γ(1− α)
u′(s) ds = Au(t) + f(t), u(0) = x (1.1) fra

in a Banach space X, where A is an m-dissipative linear or nonlinear operator in X.
Here, Dα

t is the Caputo fractional derivative of order α with 0 < α < 1. Our analysis
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will focus on fractional power equations in time but A may represent the fractional
power operator in space such as fractional power Laplacean −(−∆)β (also, see Section
). In general we consider equations of the form∫ t

0
g(t− s)u′(s) ds = Au(t) + f(t), u(0) = x, (1.2) frag

where we assume g(s) ≥ 0 is monotonically deceasing and integrable on any finite
interval (0, R). Equation (

fra
1.1) is the special case of withfrag

g(t) = g1−α(t) =
t−α

Γ(1− α)
. (1.3) gal

As shown in Appendix, such an equation arises in the continuous time random walk
model for groundwater movement in naturally fractured and heterogeneous porous
aquifers

MK
[3] and tick-by-tick dynamics of financial markets

SGM
[5]. Boussinesq (1885) and

Basset (1888) found that the force F on an accelerating spherical particle in a viscous
fluid is given by

F =
3

2
D2√πρcµc

∫ t

0
(
Du
Ds − v

′(s)
√
t− s

ds,

where D is the particle diameter, D
Ds is the material derivative, and u and v are the

fluid and particle velocity vectors, respectively. Thus, one can the Basset equation as

(
frag
1): with g = δ0 + k t−1/2

Γ(1/2) . i.e.

u′(t) + kD
1
2
t u = Au(t) + f(t), u(0) = x.

Or, in general

g(t) =

∫ 1

0

t−α

Γ(1− α)
e−βt dµ(α)

where µ is a positive measure on (0, 1]. The exponential decay model is

g(t) =
t−α

Γ(1− α)
e−βt

for some β > 0. Or, in general

g(t) =

∫ 1

0

t−α

Γ(1− α)
e−βt dµ̃(β)

where µ̃ is a positive measure on [0,∞).
Since by the change of variable t− s = −θ∫ t

0
g(t− s)u′(s) ds =

∫ 0

−t
g(−θ)u′(t+ θ) dθ,

we have∫ t

0
g(t− s)u′(s) dx =

d

dt

∫ t

0
g(t− s)u(s) ds− g(t)u(0). =

d

dt

∫ t

−∞
g(t− s)u(s) ds, (1.4) trans
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where we set u(s) = x, s ≤ 0. Equivalently,∫ t

0
g(t− s)u′(s) dx =

d

dt

∫ t

0
g(t− s)(u(s)− u(0)) ds.

Thus, (
frag
1) is written as the fractional differential equation of the Riemann-Liouville

form:
d

dt

∫ t

0

(t− s)−α

Γ(1− α)
u(s) ds = Au(t) + f(t) +

(t− s)−α

Γ(1− α)
u(0),

or
d

dt

∫ t

0
g(t− s)(u(s)− u(0)) ds = Au(t) + f(t).

There are several approaches to define the solution to (
fra
1.1). One uses the Mitag-

Leffler function Eα,β(t) defined by

Eα,β(λt) =
∞∑
n=0

λntnα

Γ(nα+ β)
. (1.5) ML

That is, Eα,1 satisfies
Dα
t Eα,1(λt) = λEα,1(λt).

Suppose A has a spectral resolution

Aφ =

∫
C
λdE(λ)φ,

then it can be shown that for f = 0 the solution to (
fra
1.1) is given by

u(t) =

∫
C
Eα,1(λt)dE(λ)x.

The other approach is the integral equation approach. Let Jαt be the operator
defined by

Jαt φ =

∫ t

0

(t− s)α−1

Γ(α)
φ(s)) ds.

Then, Jαt D
α
t u = u(t)− x, ; t ≥ 0 and we obtain the integral equation for u;

u(t) = x+

∫ t

0

(t− s)α−1

Γ(α)
(Au(s) + f(s)) ds,

Thus, one can apply the maximum monotone operator theory to establish the existence
and regularity of solutions

B,P
[1, 4].

Our approach is based on the following observation. One can write (
fra
1.1) as the

functional differential equation∫ 0

−∞
g(θ)u′(t+ θ) dθ = Au(t) + f(t), with initail value u(θ) = φ(θ), θ ≤ 0. (1.6) fde

where t − s = −θ ≤ 0 and θ ∈ R− → g(θ) = g(−θ) is the even extension of g
and is monotonically increasing on R−. Note that if we let φ(θ) = x, θ ≤ 0 and
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g(θ) = 1
Γ(1−α) |θ|

−α, then (
fde
1.6) reduces to (

fra
1.1). That is, if θ → u(t + θ) is absolute

continuous, it follows from (
tars
??) (see, Section 2.2 for the precise discussions) that∫ 0

−∞
g(θ)u′(t+ θ) dθ =

∫ t

0
g(t− s)u′(s) ds.

We then embed the solution u(t) = z(t, 0) in the state (history) space

z(t, θ) = u(t+ θ) ∈ Z = C((−∞, 0], X).

Then, (
frag
1) has the Markovian form as the evolution equation in Z:

d

dt
z(t) = A(t)z(t), (1.7) evol

where the operator A(t) is defined by

A(t)φ = φ′(θ), θ ∈ (−∞, 0] (1.8) evol0

in Z with domain

dom (A(t)) = {φ ∈ Z : φ′ ∈ Z and

∫ 0

−∞
g(θ)φ′(θ) dθ = Aφ(0)+f(t), φ(0) ∈ dom(A)}.

(1.9) evol1

Dynamics (
frag
1) is embedded in (

evol
1.7) as the non-local boundary value condition as θ =

0+ for the first order differential operator A(t). We analyze the well-posedness and
the property of of solutions to (

frag
1) based on the semigroup generated by (

evol
1.7), i.e.,

show that the solution map (x, f) ∈ X × C(0, T ;X) → u(t) ∈ C(0, T ;X) exists and
continuous. It will be shown that if A is dissipative and maximal monotone in X,
then A(t) is dissipative and maximal monotone in Z. We then use the semigroup
generation theory to define the solution z(t) ∈ C(0, T ;Z) to (

evol
1.7) and the solution to

(
frag
1) by u(t) = z(t, 0) ∈ C(0, T ;X). In this way we can define the solution to a more

general class of equations of the form (
farg
??). In the case of (

fra
1.1) with a closed linear

operator A, we have

u(t) = x+A

∫ t

0

(t− s)α−1

Γ(α)
u(s) ds+

∫ t

0

(t− s)α−1

Γ(α)
f(s) ds.

for all x ∈ X and f ∈ C(0, T ;X), i.e.,∫ t

0

(t− s)α−1

Γ(α)
u(s) ds ∈ C(0, T ; dom (A)).

For the case of a closed linear operator A, we also develop the operator theoretic
approach to (

fra
1.1) and (

frag
1). If we take the Laplace transform of (

fra
1.1)

λαû = λα−1x+ f̂

and thus
û = (λα I −A)−1(λα−1x+ f̂)

assuming A is maximal monotone. Here, for 0 < α < 1 there exists θ > 0 such that

|(λα I −A)−1| ≤ Mα

|λ|α
on the sector Σθ = {z ∈ C : arg(z) ≤ π

2
+ θ} ∩ {z 6= 0}.
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Thus, we have the representation of the solution operator u(t) = S(t)x:

S(t)x =
1

2πi

∫
Γ
eλt(λα I −A)−1λα−1x dλ.

where Γγ,δ be the integration path defined by

Γ± = {z ∈ C : |z| ≥ δ, arg(z) = ±(
π

2
+γ)}, Γ0 = {z ∈ C : |z| = δ, |arg(z)| ≤ π

2
+γ}.

For t > 0 define P (t) ∈ L(X) by

P (t)x =
1

2πi

∫
Γ
eλt(λα I −A)−1x dλ.

Then, we have the solution representation

u(t) = S(t)x+

∫ t

0
P (t− s)f(s) ds. (1.10) solr

We will analyze the solution properties based on this operator representation of S(t)
and P (t) and establish the regularity and asymptotic property as t → ∞ of S(t) and
P (t). For the sectorial operator A we analyze the properties of S(t) and P (t) based on
the fractional operator calculus.

For the semilinear equation with Au = A0u+ F (u), we define the mild solution by
the solution representation;

u(t) = S(t)x+

∫ t

0
P (t− s)(F (u(s) + f(s)) ds. (1.11) semil

where S(t), P (t) are generated by A0. We establish the existence of local and global
solutions to (

semil
1.11) based on the properties S(t) and P (t) for the general case and the

case when A0 is a sectorial operator.
In summary the following is an outline of our presentation.

Plan of the Manuscript

[1] Well-posedness of (
fde
1.6) using C0-semigroup theory for linear case, Section 2.

[2] Well-posedness of (
fde
1.6) using Crandall-Ligget theory for nonlinear monotone

graph, Section 3.

[3] Evolution case A = A(t) using the DS-approximation theory of Kobayashi-
Kobayashi-Oharu, Section 4.

[4] Operator theoretic method and Sectorial Calculus based on the resolvent, Section
5.

[5] Solution Representations for Caputo equation and Riemann-Liouville equation,
Section 5.

[6] Nonhomogeneous equations and Variation of constant formula, Section 6.

[7] Dual system, weak solutions and Control problems, Section 7

[8] Fractional wave equations (0 < α < 2), Section 8.

[9] Finite Difference approximation, stability and convergence analysis, Section 9.
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[10] Local solutions to nonlinear fractional power ODEs, Section 10.

[11] Local solutions to semi-linear fractional power PDEs, Section 11.

[12] Examples, fractional diffusion, conservation law, Hamilto-Jacobi and Navier-
Stokes equations, Section 12.

[13] Nonlocal and fractional PDEs in space, Section 13

[14] Eigenvalue Problems for fractional operator, Section 14

[15] CTRM model and Fractional diffusions via homogenization, Appendix.

2 Wellposedness for a closed linear operator A

In this section we consider the case A is m-dissipative in a Banach space X and show
that A defined by (

evol0
1.8)–(

evol1
1.9) generates the C0-semigroup on appropriate state spaces

Z.

2.1 Weighted Z = Lg(−∞, 0;H) state space

First, we consider A is a closed linear operator in X. Let X = H be a Hilbert space.
Let A be the linear operator defined by

Aφ = φ′(θ)

on the weighted history space Z = L2
g(−∞, 0;H) with norm

|φ|2Z =

∫ 0

−∞
g(θ) |φ(θ)|2H dθ

with domain

dom (A) = {φ ∈ Z : φ′ ∈ Z and

∫ 0

−∞
g(θ)φ′(θ) dθ = Aφ(0), φ(0) ∈ dom(A)}.

The evolution equation (
frag
1) for u is embedded into the non-local boundary condition

at θ = 0+ in the domain of the closed operator A.

thm2.1 Theorem 2.1. Assume A is m-dissipative. Then, A is m-dissipative, i.e.,

R(λ I −A) = Z for λ > 0.

Thus, A generates the C0-semigroup on Z.

Proof: Define

gε(θ) =
1

ε

∫ θ

θ−ε
g(θ) dθ

For φ ∈ dom(A)

(Aφ, φ)Z =

∫ 0

−∞
g(θ)(φ′(θ), φ(θ)− φ(0))H dθ + (

∫ 0

−∞
g(θ)φ′(θ) dθ, φ(0))H ,
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where∫ 0

−∞
g(θ)(φ′(θ), φ(θ)− φ(0))H = lim

ε→0+

∫ 0

−∞
gε(θ)(φ

′(θ), φ(θ)− φ(0))H dθ

= −1

2
lim
ε→0+

∫ 0

−∞
g′ε(θ)|φ(θ)− φ(0)|2 dθ ≤ 0,

(2.1) sta0

since g′ε(θ) ≥ 0. Since

(

∫ 0

−∞
g(θ)φ′(θ) ds, φ(0))H = (Aφ(0), φ(0)) ≤ 0

we have (Aφ, φ)Z ≤ 0. If we define for λ > 0

ψ(θ) =

∫ 0

θ
eλ(θ−ξ)f(ξ) dξ, (2.2) psi

then
λψ − ψ′ = f ∈ Z, ψ(0) = 0,

and |ψ|Z ≤
1

λ
|f |Z . Let

I =

∫ −δ
−R

g(θ)ψ′(θ) dθ = g(−δ)ψ(−δ)− g(−R)ψ(−R)−
∫

δ

−R
g′(θ)ψ(θ) dθ. (2.3) bdd

Since for all −∞ < R < δ < 0

|ψ(θ)| ≤ 1√
λg(θ)

|f |Z and

∫ −δ
−R

(g′)2

g
dθ is bounded,

it follows that for some M > 0

|
∫ 0

−∞
g(θ)ψ′(θ) dθ| ≤M |ψ|Z .

Let

∆(λ) = λ

∫ 0

−∞
eλθg(θ) dθ. (2.4) Delta

Since A is m-dissipative, λφ−Aφ = f has the solution

φ = (λ I −A)−1f = eλθφ(0) + ψ(θ) ∈ dom(A),

where

φ(0) = (∆(λ) I −A)−1

∫ 0

−∞
g′(θ)ψ(θ) dθ.

The theorem now follows from the Lumer-Phillips theorem
IK
[2]. �
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2.2 State space Z = C((−∞, 0];H)

Let X = H be a Hilbert space and consider the state space

Z = C((−∞, 0];H).

Define a linear operator A by
Aφ = φ′

with domain

dom(A) = {φ′ ∈ Z : φ(0) ∈ dom(A),

∫ 0

−∞
g(θ)φ′(θ) dθ = Aφ(0)}

Then,

(

∫ 0

−∞
gε(θ)φ

′(θ) dθ, φ(0)) = (

∫ 0

−∞

g(θ)− g(θ − ε)
ε

(φ(0)− φ(θ)) dθ, φ(0))

=

∫ 0

−∞

g(θ)− g(θ − ε)
ε

((φ(0), φ(0))− (φ(θ), φ(0))) dθ

≥
∫ 0

−∞

g(θ)− g(θ − ε)
ε

(|φ(0)|2 − |φ(θ)||φ(0)|) dθ

(2.5) sta

Note that

lim
ε→0+

(

∫ 0

−∞
gε(θ)φ

′(θ) dθ, φ(0)) = (Aφ(0), φ(0)) (2.6) sta1

Suppose |φ(0)| > |φ(θ)|, then it follows from (
sta
2.5)–(

sta1
2.6) that

(Aφ(0), φ(0)) > 0

which is a contradiction to the fact that A is dissipative . That is, max |φ| = |φ(θ0)|
for some θ0 < 0 and

|λφ−Aφ|Z ≥ |λφ(θ0)− φ′(θ0)|Z ≥ λ |φ(θ0)| = λ |φ|Z

since (φ′(θ0), φ(θ0))H = 0. Thus, A is dissipative. Moreover, for λ > 0 From (
bdd
2.3)

|I| ≤ 2(g(−δ) + g(−R))|ψ|Z

and thus φ = eλθφ(0) + ψ ∈ dom (A) satisfies

(λ I −A)φ = f in Z,

where

φ(0) = (∆(λ)−A)−1

∫ 0

−∞
g(θ)(f(θ)− λ

∫ 0

θ
eλ(θ−ξ)f(ξ) dξ) dθ

φ = (λ I −Aφ)−1f = eλθφ(0) +

∫ 0

θ
eλ(θ−ξ)f(ξ) dξ.�

(2.7) resl

Hence, we have

thm2.2 Theorem 2.2. Assume A is m-dissipative. Then, A is dissipative and R(λ I−A) = Z
for λ > 0. Thus, A generates the C0-semigroup T (t) on Z = C((−∞, 0];H).
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2.3 Banach space-valued solution

In this case section we discuss the case when X is a Banach space and A is m-dissipative
linear operator in X. Let X∗ is the dual space of X, 〈·, ·〉X×X∗ denote the dual product
and F be the duality mapping

F (x) = {x∗ ∈ X∗ : |〈x, x∗〉| = |x|X |x∗|X∗}.

Then , A is dissipative if and only if for all x ∈ dom (A) there exists a x∗ ∈ F (x), the
such that

〈Ax, x∗〉 ≤ 0

and we assume
range(λ I −A) = X for all λ > 0.

Then we have the generation theory:

thm2.3 Theorem 2.3. Assume A is m-dissipative in a Banach space X. Then, A is dissipative
and R(λ I − A) = Z for λ > 0. Thus, A generates the C0-semigroup T (t) on Z =
C((−∞, 0];X). Also, it follows from (

resl
2.7) that

((λ I −A)−1x)(0) = (∆(λ) I −A)−1∆(λ)λ−1x. (2.8) res2

Proof: First we show that A is dissipative. For φ ∈ dom (A) suppose |φ(0)| > |φ(θ)|
for all θ < 0. For all x∗ ∈ F (φ(0))

〈
∫ 0

−∞
gε(θ)(φ

′)dθ, x∗〉

= 〈
∫ 0

−∞

g(θ)− g(θ − ε)
ε

〈φ(θ)− φ(0)), x∗〉 dθ ≤ 0

since
〈φ(θ)− φ(0), x∗〉 ≤ (|φ(θ)| − |φ(0)|)|φ(0)| < 0, θ < 0.

Thus,

〈
∫ 0

−∞
g(θ)φ′dθ, x∗〉 < 0. (2.9) ine0

But, since there exists a x∗ ∈ F (φ(0)) such that

〈Ax, x∗〉 ≥ 0

which contradicts to (
ine0
2.9). Thus, there exists θ0 such that |φ(θ0)| = |φ|Z . Since

〈φ(θ), x∗〉 ≤ |φ(θ)| for x∗ ∈ F (φ(θ0)), θ → 〈φ(θ), x∗〉 attains the maximum at θ0 and
thus 〈φ′(θ0), x∗〉 = 0 Hence,

|λφ− φ′|Z ≥ 〈λφ(θ0)− φ′(θ0), x∗〉 = λ |φ(θ0)| = λ |φ|Z . (2.10) ine1

The range condition is exactly the same as the one in the proof of Theorem (
thm2.2
2.2) and

the theorem follows from the Lumer-Phillips theorem. �
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2.4 Mild solution to (
frag
1)

Consider the case with the initial value φ(θ) = x ∈ Z. It follows from (
resl
2.7) that for

µ > 0

(I − µA)−1x = φµ, φµ(θ) = x+ e
θ
µ (φµ(0)− x)

with

φµ(0) = (∆(
1

µ
) I −A)−1∆(

1

µ
)x

since

λ

∫ 0

θ
eλ(θ−ξ) dξ − 1 = eλθ.

Note that

φµ(0)− x = (I − 1

∆( 1
µ)
A)−1 1

∆( 1
µ)
Ax

Thus,

|φµ(0)− x| ≤ 1

∆( 1
µ)
|Ax|X → 0 as µ→ 0

for all x ∈ dom(A). Since φµ ∈ dom(A), zµ = uµ(t + ·) = T (t)φµ is a strong solution
to

d

dt
zµ(t) = Azµ(t), zµ(0) = φµ.

That is, uµ ∈ C1((−∞, T ];X) satisfies∫ t

0
g(t− s)u′µ(s) ds = Auµ(t)−

∫ 0

−∞
g(−t+ θ)φ′µ(θ) dθ.

where

|
∫ 0

−∞
g(−t+ θ)φ′µ(θ) dθ| ≤ g(t)|φµ(0)− x| → 0 as µ→ 0+.

Since Dα
t is closed on C(0, T ;X), u(t) = limµ→0+ uµ(t) satisfies (

fde
1.6);

Dα
t u = Au(t)

Let g∗ = L−1( 1
∆(λ)), i.e., ∫ τ

s
g∗(τ − t)g(t− s) dt = 1. (2.11) gs

Thus,∫ τ

0
g∗(τ−s)

∫ t

0
g(t−s)u′(s) ds =

∫ τ

0
u′(s)

∫ τ

s
g∗(τ−t)g(t−s) dtds =

∫ τ

0
u′ ds = u(τ)−u(0).

(2.12) gs0

Since AT (t) = T (t)A, Auµ(t)→ Au(t) in C(0, T ;X) and the limit u(t) = limµ→0+ uµ(t)
satisfies

u(t) = x+A

∫ t

0
g∗(t− s)u(s) ds. (2.13) int1

Since dom(A) is dense in X and u(t) ∈ C(0, T ;X) defines the mild solution to (
frag
1) with

f = 0.
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In the case of (
fra
1.1), g∗(t) =

tα−1

Γ(α)
, i.e,

∫ τ

0

(τ − t)α−1

Γ(α)

(t− s)−α

Γ(1− α)
= 1 (2.14) J

and we have if x ∈ dom(A), then u(t) ∈ C(0, T ; dom(A)) satisfies

u(t) = x+A

∫ t

0

(t− s)α−1

Γ(α)
u(s) ds. (2.15) inte

for (
fra
1.1) with f = 0.

Theorem 2.4. Equation (
int1
2.13) holds for all x ∈ X, i.e.,∫ t

0
g∗(t− s)u(s) ds ∈ C(0, T ; dom (A)).

In the case of (
fra
1.1) if x ∈ dom(A), then t→ u(t) = S(t)x ∈ X is absolutely continuous

and (
inte
2.15) holds for all x ∈ X

Proof: The first assertion follows since dom (A) is dense in X and A is a closed operator
in X. The second one follows since

u′(t) =
d

dt

∫ t

0

(t− s)α−1

Γ(α)
Au(s) ds =

∫ t

0

(t− s)α−1

Γ(α)
Au′(s) ds+

tα−1

Γ(α)
Ax.�

3 Nonlinear Monotone Equations in Banach spaces

In this section we consider a nonlinear fractional inclusion of the form∫ t

0
g(t− s)u′(s) ds ∈ Au(t).

Let a graph A ⊂ X × X be dissipative, i.e., for any [xi, yi] ∈ A there exists x∗ ∈
F (x1−x2) such that Re〈y1−y2, x

∗〉 ≤ 0, where F : X → X∗ the duality mapping. Or,
equivalently

|x− λ y| ≥ |x| for all λ > 0 and [x, y] ∈ A.

Define A in Z = C((−∞, 0];X) by

Aφ = φ′

with domain

dom(A) = {φ′ ∈ Z : φ(0) ∈ dom(A),

∫ 0

−∞
g(θ)φ′(θ) dθ ∈ Aφ(0)}.

thm3.1 Theorem 3.1. Assume A is dissipative and Range(λ I − A) for all sufficiently small
λ > 0. Then, A is dissipative and Range(λ I −A) = Z for all sufficiently small λ > 0.
Thus A generates the nonlinear semigroup of contraction on Z.
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Proof: For φ1, φ2 ∈ dom (A) suppose |φ1(0) − φ2(0)| > |φ1(θ) − φ2(θ)| for all θ < 0.
For all x∗ ∈ F (φ1(0)− φ2(0))

〈
∫ 0

−∞
gε(θ)(φ

′
1 − φ′2)dθ, x∗〉

= 〈
∫ 0

−∞

g(θ)− g(θ − ε)
ε

〈φ1(θ)− φ2(θ)− (φ1(0)− φ2(0)), x∗〉 dθ ≤ 0

since

〈φ1(θ)−φ2(θ)−(φ1(0)−φ2(0), x∗〉 ≤ (|φ1(θ)−φ2(θ)|−|φ1(0)−φ2(0))|)|φ1(0)−φ2(0)| < 0, θ < 0.

Thus,

〈
∫ 0

−∞
g(θ)(φ′1 − φ′2)dθ, x∗〉 < 0. (3.1) ine

But, since for y1 ∈ Aφ1(0), y2 ∈ Aφ2(0) there exists a x∗ ∈ F (φ1(0)−φ2(0)) such that

〈y1 − y2, x
∗〉 ≥ 0

which contradicts to (
ine
3.1). Thus, there exists θ0 such that |φ1(θ0)−φ2(θ0)| = |φ1−φ2|Z

and thus 〈φ′(θ0), x∗〉 = 0 for all x∗ ∈ F (φ1(θ0)− φ2(θ0)). Thus,

|λ (φ1 − φ2)− (φ′ − φ′2)|Z ≥ 〈λ (φ1(θ0)− φ2(θ0))− (φ′1(θ0)− φ′2(θ0)), x∗〉

= λ |φ1(θ0)− φ2(θ0)| = λ |φ1 − φ2|Z .
(3.2) ineq

For the range condition

λφ− φ′ = f,

∫ 0

−∞
g(θ)φ′(θ) dθ ∈ Aφ(0)

we have φ = eλθφ(0) + ψ and

∆(λ)φ)(0)−
∫ 0

−∞
g(θ)ψ′(θ) dθ ∈ Aφ(0)

where ψ is defined by (
psi
2.2). Since A is m-dissipative,

φ(0) = (∆(λ) I −A)−1

∫ 0

−∞
g(θ)ψ′(θ) dθ

exits and range(λ I − A) = Z. Thus, the theorem follows from the Carandall and
Ligget theorem

IK
[2]. �

3.1 Cone preserving

Let C be a closed cone in X and A is cone preserving, i.e.,

(I − sA)−1C ⊂ C

for all s > 0..

12



thm3.2 Theorem 3.2. A is cone preserving and T (t)C ⊂ C.

Proof: From
φ = (I − µA)−1f = e

1
µ
θ
φ(0) + ψ(θ)

with

φ(0) = (∆(
1

µ
)−A)−1(

∫ 0

−∞
g′(θ)ψ(θ) dθ)

ψ(θ) =
1

µ

∫ 0

θ
e

1
µ

(θ−ξ)
f(ξ) dξ

Thus, since g′ ≥ 0 if f ∈ C, then φ ∈ C. �

4 Nonlinear Fractional Evolution Equations

In this section we consider the case of a class of nonlinear evolution operators A = A(t)
for (

fee
??). Let X be a Banach space.

Dg
t u =

∫ t

0
g(t− s)u′(s) ds ∈ A(t)u(t), u(0) = x. (4.1) nonle

We assume a family of dissipative operatorsA(t) ⊂ X×X, t ∈ [0, T ] satisfy dom (A(t)) =
X. Define the operator A(t) in Z = C((−∞, 0];X) by

A(t)φ = φ′

with domain

dom (A(t)) = {
∫ 0

−∞
g(θ)φ′(θ) dθ ∈ A(t)φ(0)}.

For λ > 0 define the resolvent

Jλ(ti)z = (I − λA(ti))
−1z, z ∈ Z

and φi = Jλ(A(ti))z. Then, ψ = φ1 − φ2 ∈ Z satisfies

∆(
1

λ
)ψ(0) = y1 − y2

for yi ∈ A(ti)φi(0). We assume there exist a continuous function f : [0, T ]→ X and a
constant L > 0 such that

|ψ(0)| ≤ λαL |f(t1)− f(t2)|. (4.2) A.2

Since λψ − ψ′ = 0, it follows from (
ineq
3.2) that

|Aλ(t1)z −Aλ(t2)z| ≤ λα−1L |f(t1)− f(t2)|, (4.3) cont

where the Yoshida approximation Aλ(t1) is defined by

Aλ(ti)z =
1

λ
(Jλ(ti)z − z).

13



For λ > 0 let {zλk} be the sequence generated by

zλk = Jλ(tλk)zλk−1, zλ0 = φ ∈ Z.

That is, the product formula zλk = Πm
i=1Jλ(ti)z defines an approximation sequence and

satisfies
|Πm

i=1Jλ(ti)z1 −Πm
i=1Jλ(ti)z2| ≤ |z1 − z2|. (4.4) prod

From (
cont
8.4)

|Aλ(tλk)zλk | = |Aλ(tλk)Jλ(tλk)zλk−1| ≤ |Aλ(tλk)zλk−1|

≤ |Aλ(tλk−1)zλk−1|+ λα−1L |f(tλk)− f(tλk−1)|.

If we assume f is of bounded variation on [0, T ], then, for

ak = |Aλ(tk)z
λ
k |, bk = L |f(tλk)− f(tλk−1)|

we have
ak = ak−1 + λα−1bk

and thus
|Aλ(tλk)| ≤M0λ

α−1 (4.5) bound

for all k and λ.
Let λ = 2−n, µ = 2−m and N = 2m−n with tλk = k λ. For 1 ≤ j ≤ N define ẑµiN+j

by
ẑµiN+j = Jµ(tλ(i+1)N )ẑµiN+j−1.

It follows from (
A.2
4.2) that

|zµiN+j − ẑ
µ
iN+j | ≤ |z

µ
iN+j−1 − ẑ

µ
iN+j−1|+ µα|f(tµ(i+1)N )− f(tµiN+j)|L.

If we assume f is Hölder continuous with order 1− α+ γ, γ > 0, then

N∑
j=1

µα|f(tλ(i+1)N )− f(tλiN+j)| ≤ λ2m−n−γ m.

Define the piecewise constant functions by

zµ(t) = zµiN+j , ẑµ(t) = zµiN+j for t ∈ [tiN+j , tiN+j+1).

Then,
|zµ(t)− ẑµ(t)| ≤ 2(1−γ)m−n Lλ. (4.6) err1

It follows from Theorem 5.3 (Crandall-Liggett theorem) that

|zλ(t)− ẑµ(t)| ≤ C λ |Aλ(tλi−)zλi−1|. (4.7) CL

It thus follows from (
cont
8.4) that

|zλ(t)− ẑµ(t)| ≤ C̃ λα. (4.8) err2

Hence, from (
err1
4.6)–(

err2
4.8) we have

|zλ(t)− zµ(t)| ≤ 2(1−γ)m−(2−α)n Lλα.+ C̃λα ≤ C λα
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if m ≤ 2− α
1− γ

n. Let us define the sequence {mk} by

mk = [
2− α
1− γ

mk−1], m0 = n.

Then, by induction in k

|zµk(t)− zµk−1
(t)| ≤ C 2−αmk−1 ,

where µk = 2−mk . Since mk −mk−1 ≥
1− α+ γ

1− γ
m0 > 0,

|zµk − zµ0 | ≤Mλα

for some M > 0 and thus {zλ}, λ = 2−n is a Cauchy sequence. Consequently,
z(t) = limλ→0 exits in C(0, T ;Z) which defines the solution to (

nonle
4.1) with z(0) =

φ ∈ dom(A(0)) and
|zλ(t)− z(t)| ≤Mλα.

It follows from (
prod
4.4) that

|z1(t)− z2(t)| ≤ |φ1 − φ2| for φ1, φ2 ∈ dom (A((0))

and dom (A(0)) is dense in Z, (
nonle
4.1) has the unique mild solution for all x ∈ X. In

summary we have

thm4.1 Theorem 4.1. Assume (A2) and f is of bounded variation and Hölder continuous of
order 1− α+ γ, γ > 0 on [0, T ]. Then,

z(t) = lim
λ→0

Π
[t/λ]
i=1 Jλ(tλi )z(0)

exits for all z(0) ∈ X. Moreover,

|zλ(t)− z(t)| ≤ C λα

for z(0) ∈ dom(A(0)).

The followings are specific cases for which Theorem
thm4.1
4.1. applies. Assume A(t) is of

the form
A(t)u = Au+ g(t, u),

where A is a monotone graph and u→ g(t, u) is a montone operator. If

|g(t1, u)− g(t2, u)|X ≤ L |f(t1)− f(t2)| (1 + |u|X)

then, condition (
A.2
4.2) holds.

Assume for c > 0

|A(0)A(t)x−A(t)A(0)x| ≤ c |x|.

|A(t1)x−A(t2)x| ≤ |f(t1)− f(t2)||A(0)x|.
(4.9) A.3
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For F (t)x = A(0)A(t)x−A(t)A(0)x we have

Dg
tA(0)x = A(t)A(0)x(t) + F (t)x(t).

Thus, if A(0)x(0) ∈ X, one can show that there exists M > 0 such that

|A(0)x(t)| ≤M, t ∈ [0, T ]. (4.10) Bou

Since ψ(0) = φ1(0)− φ2(0) ∈ X satisfies

∆(λ)ψ(0) = A(t2)ψ(0) + (A(t1)−A(t2))φ1(0),

it follows from (
A3
??)–(

Bou
4.10) that condition (

A2
??) holds.

5 Operator Theoretic Representation

In this section we develop the solution representation for the linear equation;∫ t

0
g(t− s)u′(s) = Au(t) + f(t), u(0) = x. (5.1) Cap

Assume that A is a closed densely defined linear operator A in the Banach space X
and there exist M ≥ 1 and ω0 ∈ R such that

|(λ I −A)−1| ≤ M

Reλ− ω0
for all Reλω0. (5.2) res

For example, (
res
5.2) holds if A generates a C0 semigroup of G(M,ω0) type on X. Define

the Yoshida approximation Aµ ∈ L(X) of A by

Aµ = A(I − µA)−1 for µω0 < 1. (5.3) yoshida

Then, Aµ ∈ L(X) and consider the equation∫ t

0
g(t− s)u′µ(s) ds = Aµuµ(t) + f(t), uµ(0) = x.

Taking the Laplace transform of the equation, we obtain

∆(λ)ûµ − λ−1∆(λ)x = Aµûµ + f̂ ,

and thus
ûµ = (∆(λ) I −Aµ)−1λ−1∆(λ)x+ (∆(λ) I −Aµ)−1f̂ .

Let f = 0. Since Reσ(Aµ) ≤ ω0

1− µω0
< γ, we have

uµ(t) = Sµ(t)x =
1

2πi

∫ γ+i∞

γ−i∞
eλt(∆(λ)−Aµ)−1λ−1∆(λ)x dλ.

Note that
∆(λ)(∆(λ) I −A)−1 = I + (∆(λ) I −A)−1A (5.4) id
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and in general

∆(λ)(∆(λ) I −A)−1 =
n−1∑
k=0

∆(λ)−kAk + (∆(λ) I −A)−1∆(λ)−nAn. (5.5) ser

Since
1

2πi

∫ γ+i∞

γ−i∞

eλt

λ
dλ = 1

and ∫ γ+i∞

γ−i∞
|λ−1∆(λ)−1| dλ <∞,

we have
|Sµ(t)x| ≤M |Ax|,

uniformly in µ > 0. Since from (
id
5.4)

∆(λ)λ−1(∆(λ) I −A)−1 =
1

λ
+ λ−1A(∆(λ) I −A)−1,

if L(∆(λ)−1) = g∗ we have

uµ(t) = x+

∫ t

0
g∗(t− s)AµSµ(s)x ds.

Moreover, since

(∆(λ) I −Aµ)−1x− (∆(λ) I −A)−1x =
µ

1 + µ∆(λ)
(ν I −A)−1(∆(λ) I −A)−1A2x,

where ν =
∆(λ)

1 + µ∆(λ)
, {uµ(t)} is Cauchy in C(0, T ;X) provided that x ∈ dom(A3).

Letting µ→ 0+, we obtain

thm5.1 Theorem 5.1. For x ∈ dom(A2)

u(t) = S(t)x =
1

2πi

∫ γ+i∞

γ−i∞
eλt(∆(λ) I −A)−1λ−1∆(λ)x dλ

u(t) = x+

∫ t

0
g∗(t− s)AS(s)x ds.

(5.6) res1

corr5.1 Corollary 5.1. For x ∈ dom(An+2),

u(t) = S(t)x = x+

n−1∑
k=1

L−1(λ−1∆(λ)−k)Akx+
1

2πi

∫ γ+i∞

γ−i∞
eλt(∆(λ) I−A)−1λ−1∆(λ)−nAnx dλ,

(5.7) res2

x where L−1(·) is the inverse Laplace transform. In the case of the Caputo (g = g1−α =
|θ|−α

Γ(1− α)
)

S(t)x =

n−1∑
k=0

tkα

Γ(kα+ 1)
Akx+

1

2πi

∫ γ+i∞

γ−i∞
eλt(λα I −A)−1λ−1−nαAnx dλ,
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and

u(t) = x+

∫ t

0

(t− s)α−1

Γ(α)
AS(t)x dx.

Proof: The first assertion follows from (
ser
5.5). For the Caputo case ∆(λ) = λα and

g∗(t) =
tα−1

Γ(α)
. �

5.1 Riemann-Liouville equation

In this section we consider the Riemann-Liouville equation

d

dt

∫ t

0
g(t− s)u(s) ds = Au(t) + f(t) (5.8) SL

with

(

∫ t

0
g(t− s)u(s) ds)(0+) = y.

Taking the Laplace transform, we have

∆(λ)û = y +Aû+ f̂

and thus
û = (∆(λ) I −A)−1(y + f̂) (5.9) Lap

Note that
∆(λ)(∆(λ) I −A)−1 = I + (∆(λ) I −A)−1A

Let the linear operator P (t)

P (t)y =
1

2πi

∫
Γ
eλt(∆(λ) I −A)−1y dλ,

for y ∈ dom(A). Hence, using the same arguments as above, from (
Lap
5.9) we have;

th5.2 Theorem 5.2. The solution to (
SL
5.8) is given by

u(t) = P (t)y +

∫ t

0
P (t− s)f(s) ds

for y ∈ dom(A) and f ∈ L2(0, T ; dom(A), and for the case of fractional derivative

g = g1−α =
|θ|−α

Γ(1− α)
;

P (t)y = tα−1
n−1∑
k=0

tkα

Γ(kα+ α)
Aky +

1

2πi

∫ γ+i∞

γ−i∞
eλt(λα I −A)−1λ−nαAny dλ.

for y ∈ dom(An+2).
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Proof: The second assertion follows from

1

2πi

∫ γ+i∞

γ−i∞
λ−α dλ =

tα−1

Γ(α)

and the fact that
(λα I −A)−1x = λ−αx+ (λα I −A)−1λ−α

and by induction

(λα I −A)−1x = λ−α
n−1∑
k=0

(
A

λα

)k
+ (λα I −A)−1

(
A

λα

)n
x.�

Similarly, for (
Cap
5.1) the solution is given by

u(t) = S(t)x+

∫ t

0
P (t− s)f(s) ds (5.10) Sol

for x ∈ dom(A2) and f ∈ C(), T ;X)

cor5.2 Corollary 5.2.
d

dt
S(t) = P (t)A

S(t) =

∫ t

0

(t− s)α−1

Γ(α)
P (s) ds.

Proof: The first assertion follows from the fact that

λα(λα I −A)−1 = I + (λα I −A)−1A.

The second one follows simply follows from

S(t)x =
1

2πi

∫ γ+i∞

γ−i∞
eλtλα−1(λα I −A)−1x dλ

and

L−1(λα−1) =
tα−1

Γ(α)
.�

5.2 Sectorial Calculus and Asymptotic Estimates

Let a closed and densely defined linear operator A satisfy

|(λ I −A)−1| ≤ M

Reλ
for all Reλ > 0 (5.11) Res-e

Assume there exits α ∈ (0, 1) such that for 0 < c1 ≤ c2 <∞

c1 |λα| ≤ |∆(λ)| ≤ c2 |λα|, Reλ > ω0. (5.12) ass

We recall ∆(λ) = λα for

g = g1−α =
|t|−α

Γ(1− α)
.
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Then, for 0 < α < 1 there exists θ0 > 0 such that

|(∆(λ) I −A)−1| ≤ Mα

|λ|α
on Σθ = {z ∈ C : arg(z) <

π

2
+ θ0} ∩ {z 6= 0}

since
Reλα ≥ |λ|α cos(αθ) for λ = |λ|eiθ.

Let Γγ,δ be the integration path defined by

Γ± = {z ∈ C : |z| ≥ δ, arg(z) = ±(
π

2
+ θ)}, Γ0 = {z ∈ C : |z| = δ, |arg(z)| ≤ π

2
+ θ}

for some δ > 0 and 0 < θ ≤ θ0. Then, the solution map S(t) : x ∈ X → u(t) ∈ X is
given by

S(t)x =
1

2πi

∫
Γ
eλt(∆(λ) I −A)−1∆(λ)λ−1x dλ, (5.13) Rep1

using the Cauchy integral representation (
res1
5.6) and the analytic continuation. On Γ±

|eλt(∆(λ) I −A)−1∆(λ)λ−1| ≤ M

r
e−r sin θ t

for λ = r(cos(θ) + i sin(θ)), r ≥ δ. On Γ0

|eiλt(∆(λ) I −A)−1∆(λ)λ−1| ≤ M

δ
eδ sinφ t

for λ = δ(cos(φ) + i sin(φ)), |φ| ≤ π
2 + θ. Hence (

Rep1
5.13) holds for all x ∈ X. Let

P (t) ∈ L(X), t > 0 be

P (t)x =
1

2πi

∫
Γ
eλt(∆(λ) I −A)−1x dλ.

Since
∆(λ) (∆(λ) I −A)−1 = I +A(∆(λ) I −A)−1,

if x ∈ dom(A), then u(t) = S(t)x ∈ C(0, T ;X) for x ∈ dom(A) satisfies

d

dt
S(t)x =

1

2πi

∫
Γ
eλt(∆(λ) I −A)−1∆(λ)x dλ = P (t)Ax.

and if g∗ = L−1(∆(Λ)−1), then

g∗(t)P (t)x ∈ C(0, T ;X).

For x ∈ X and f ∈ C(0, T ;X) we have (
Sol
5.10):

u(t) = S(t)x+

∫ t

0
P (t− s)f(s) ds

for the solution to (
Cap
5.1).
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thm5.3 Theorem 5.3. Assume 0 ∈ ρ(A). Then, for some C > 0

| d
dt
S(t)x| ≤ C

t
|x|,

|P (t)x| ≤ C

t1−α
|x|,

AS(t)x =
1

2πi

∫
Γ
eλt((∆(λ) I −A)−1∆(λ)2 1

λ
−∆(λ)

1

λ
)x dλ.

Proof: Since 0 ∈ ρ(A), one can let δ = 0 for the integral path Γ and

|∆(λ)(∆(λ) I −A)−1| ≤M on Γ.

Thus,

| 1

2πi

∫
Γ
eλt(∆(λ) I −A)−1∆(λ)x dλ| ≤ M

π

∫ ∞
0

e−r sin θ t dr ≤ M

π sin θ t
.

|P (t)| = | 1

2πi

∫
Γ
eλt(∆(λ) I−A)−1 dλ| ≤ M

π

∫ ∞
0

r−αe−r sin θ t dr ≤ M

π
Γ(1−α)(sin θ t)α−1.�

5.3 Caputo equation and Inverse inequality

Consider the case when

g(t− s) = g1−α(t− s) =
(t− s)−α

Γ(1− α)
.

thm5.4 Theorem 5.4. For t > 0 R(S(t)) ⊂ R(A−1). If R(A−1) is pre-compact and S(t) is
injective, then R(S(t)) = R(A−1).

Proof: Since
A(λα I −A)−1 = λα(λα I −A)−1 − I, (5.14) Eq

we have

AS(t)x =
1

2πi

∫
Γ
eλtλ2α−1(λα I −A)−1x dλ− 1

Γ(1− α)
t−α x = Kx− g1−α(t)x

where

Kx =
1

2πi

∫
Γ
eλtλ2α−1(λα I −A)−1x dλ

Then, R(S(t)) ⊂ R(A−1). Since

AK =
1

2πi

∫
Γ
eλtλ3α−1(λα I −A)−1x dλ− t−2α

Γ(1− 2α)
∈ L(X),

if R(A−1) is pre-compact, K is a compact operator. Moreover, if S(t) is injective, then
it follows from the Fredholm alternative theorem that R(S(t)) = R(A−1). �
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cor5.3 Corollary 5.3. For t > 0

S(t) = −
n−1∑
k=1

t−kα

Γ(1− kα)
A−k +

1

2πi

∫
Γ
eλtλnα−1(λα I −A)−1A−n dλ. (5.15) ser1

For t > 0 sufficiently large AS(t) = K − g1−α(t) I ∈ L(X) is bounded invertible, i.e,
there exits a constant c such that

|x| ≤ c |AS(t)x|.

Moreover, for x ∈ X

|S(t)x| ∼ t−α

Γ(1− α)
|A−1x|.

Proof: Equation (
sere
??) follows from

An(λα I −A)−1 = λnα(λα I −A)−1 −
n−1∑
k=0

λkαAk.

Thus, g1−α(t)−|K| > 0 for sufficiently large t > 0. and |(g1−α(t) I−K)−1| ≤ (g1−α(t)−
|K|)−1. �

Similarly, we have

cor5.4 Corollary 5.4. For t > 0

|AS(t)| ≤ M

Γ(1− α)
t−α

|P (t)| ≤ M

Γ(α)
t−(1−α).

|AP (t)| ≤Mt−1

Moreover, assume A is a sectorial operator, i.e., there exist M > 0, θ0 > 0 such that

|(z I −A)−1| ≤ M

|z|
on Σθ0 = {z ∈ C : arg(z) ≤ π

2
+ θ0} ∩ {z 6= 0}

Then,

Aβx =

∫
Γ
λβ(z I −A)−1x

and for 0 ≤ β ≤ 1

|AβP (t)| ≤ M

t1−α+βα
. (5.16) sec-frac

Proof: It follows from (
Eq
5.14). The last assertion uses |Aβx| ≤ M |Ax|β|x|1−β for

x ∈ dom(A). �
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5.4 Basset equation

Consider the Basset equation

u′(t) + kDα
t u = Au(t) + f(t), u(0) = x.

In this case
∆(λ) = λ+ k λα.

Assume A a sectorial operator so that (
Rep1
5.13) holds. Since

A(∆(λ)−A)−1λ−1∆(λ) = (∆(λ)−A)−1λ−1∆(λ)2 − (1 + kλα−1) I

we have
AS(t)x = Kx− k g1−α(t)x,

where

Kx =
1

2πi

∫
Γ
eλtλ−1∆(λ)2(∆(λ) I −A)−1x dλ.

Moreover, we have the estimate:

|K| ≤M((t sin θ)−1 + kΓ(α)(t sin θ)−α).

Thus, if A−1 is compact, Theorem
thm5.4
5.4 holds.

6 Series Solution

Define the operator:

Jαt φ =

∫ t

0

(t− s)α−1

Γ(α)
φ(s) ds

Since J1−α
t Jαt = J1

t , we have

Dα
t J

α
t φ = φ and Jαt D

α
t φ = φ− φ(0).

Thus, (
fra
1.1) is equivalently written as

u(t) = x+

∫ t

0

(t− s)α−1

Γ(α)
Au(s) ds (6.1) equi

Thus,

S(t)x = x+A

∫ t

0

(t− s)α−1

Γ(α)
S(s)x ds. (6.2) equi1

Since Au ∈ C(0, T ;H) for x ∈ dom(A) it follows from (
equi
6.1) that

lim
t→0+

u(t)− x
tα

=
1

Γ(α+ 1)
Ax

one has the first order approximation

u(t) ∼ (I − tα

Γ(α+ 1)
A)−1x.
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Moreover, we have

lim
t→0+

u(t)− x− 1
Γ(α+1)Ax

t2α
=

1

Γ(2α+ 1)
A2x

we look for an second order approximation of the form

u(t) ∼ (I + b1t
αA)−1(I + c1t

αA)x

with

c1 − b1 =
1

Γ(α+ 1)
, b21 − c1b1 =

1

Γ(2α+ 1)
,

Thus, we obtain

b1 = − Γ(α+ 1)

Γ(2α+ 1)
, c1 =

1

Γ(α+ 1)
− Γ(α+ 1)

Γ(2α+ 1)
.

In general we can find the Pade(n, n) approximation of the form

u(t) ∼ (
n∑
k=0

bkt
kαAk)−1(I +

n∑
k=1

akt
kαAk)x.

That is, since

Eα,1(λt) =
∞∑
j=0

cjλ
ktjα, cj =

1

Γ(jα+ 1)
.

we have

(

n∑
k=0

bkt
kα)(

∑
j=0

cjt
jα) =

n∑
`=0

a`t
`α

in term by term, i.e.,

a` =
∑̀
k=0

bkc`−k, 0 ≤ ` ≤ n+ n.

Thus, {bk} satisfies
cn cn−1 . . . c0

cn+1 cn−1 . . . c1
...

cn+n cn−1 . . . cn




b0
b1
...
bn

 =


an
0
...
0

 .

Next, we consider the series expansion in terms of the resolvent (λα I −A)−1. The
Post-Widder inversion theory is given as:

FW Theorem 6.1. Let u(t) be a X-valued continuous function on t ≥ 0 such that u(t) =
O(eγt) as t→∞ for some γ and û be the Laplace transform of u(t). Then,

u(t) = lim
n→∞∞

(−1)n

n!

(n
t

)n+1
(
∂n

∂λn
û)(

n

t
),

uniformly on any compact sets of t > 0.

24



thm5.6 Theorem 6.2. If A generates a C0 semigroup on X, then

∂n

∂λn
(λα−1(λα I −A)−1) = (−1)−(n+1)λ−(n+ 1)

n+1∑
k=1

bαk,n+1(λα(λα I −A)−1)k

where bαk,n are given by the recurrence

bαk,n = (n− 1− kα)bαk,n−1 + α(k − 1)bαk−1,n−1, 1 ≤ k ≤ n, n ≥ 2

with bα1,1 = 1 and bαk,n = 0, k > n, and

S(t)x = lim
n→∞

1

n!

n+1∑
k=1

bαk,n+1 (I − (
t

n
)αA)−kx

where the convergence is uniform on bounded intervals of t ≥ 0.

Proof: By induction in n we have

∂n

∂λn
(λα−1(λα I −A)−1) = (−1)nλ−(n+1)

n+1∑
k=1

bαk,n+1(λα(λα I −A)−1)k

Since bαk,n > 0 for α ∈ (0, 1), we have

| ∂
n

∂λn
(λα−1(λα I −A)−1)| ≤

n+1∑
k=1

bαk,n+1λ
kα−n−1|(λα I −A)−k|

≤M
n+1∑
k=1

bαk,n+1

λkα−n−1

(λα − w)k
= M(−1)n

∂n

∂λn
(
λα−1

λα − ω
)

Since
λα−1

λα − ω
=

∫ ∞
0

e−λtEα,1(t) dt,

(−1)n
∂n

∂λn
(
λα−1

λα − ω
) =

∫ ∞
0

tne−λtEα,1(t) dt ≤ C n!

(λ− ω
1
α )n+1

since Eα,1(ωtα) ≤ Ce
1
α
t. Thus,

| ∂
n

∂λn
(λα−1(λα I −A)−1)| ≤ CM n!

(λ− ω
1
α )n+1

Since u(t) = S(t)x is continuous function on t ≥ 0 and u(t) = O(eγt as t → ∞, the
theorem follows from the Post-Widder inversion theory. �

Similarly, we have

cor5.5 Corollary 6.1.

P (t) =
d

dt
S(t)A−1 = lim

n→∞

tα−1

n!

n+1∑
k=1

k

nα
bαk,n+1 (I − (

t

n
)αA)−(k+1)x.
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where the convergence is uniform on bounded intervals of t > 0. The solution to (??)
is given by

u(t) = S(t)x+

∫ t

0
P (t− s)f(s) ds.

corr5.6 Corollary 6.2. For For the Caputo equation with A ∈ L(X)

S(t) = Eα,1(Atα) =
∞∑
n=0

Antnα

Γ(nα+ 1)

and

P (t) = tα−1Eα,α(Atα) = tα−1
∞∑
n=0

Antnα

Γ(nα+ α)
.

7 Nonhomogeneous equation

Consider the nonhomogeneous equation∫ t

0
g(t− s)u′(s) ds = Au(t) + f(t), u(0) = 0 (7.1) nhom

Suppose u ∈ L2
loc(0,∞, X) be a solution. Then, it is unique and satisfies the Laplace

transform of (
nhom
7.1)

(∆(λ) I −A)û = f̂ . (7.2) lap

It follows from Theorem 2.3 that A generates the C0 semigroup T (t), t ≥ 0 on Z =
C((−∞];X).

thm Theorem 7.1. For ω ≥ 0 we define the operator

Ψω = eωs(A−∆(ω) I)−1 ∈ L(X,Z)

and define

u(t) =

(
(A− ω I)

∫ t

0
T (t− s)Ψωf(s) ds

)
(0). (7.3) nhom1

Then, (
nhom1
7.3) defines the solution to (

nhom
7.1) if f ∈ C2(0, T ;X).

Proof: Note that

z(t) = (A− ω I)

∫ t

0
T (t− s)Ψωf(s) ds

= T (t)Ψωf(0)−Ψωf(t) +

∫ t

0
T (t− s)Ψωf

′(s) ds− ω
∫ t

0
T (t− s)Ψωf(s) ds

(7.4) lap1

and thus, z ∈ C(0, T ;Z) and z(t) = u(t + ·). Taking the Laplace transform of (
lap1
7.4),

we obtain
ẑ(λ) = (A− ω I)(λ I −A)−1Ψωf̂(λ)

= (λ− ω)(λ I −A)−1Ψωf̂(λ)−Ψωf̂(λ).
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Since from (
res1
5.6) and

∆(λ) = λ

∫ 0

−∞
eλθg(θ) dθ,

((λ I −A)−1Ψω)(0) = −(∆(λ) I −A)−1(∆(ω) I −A)−1

∫ 0

−∞
g(θ)(eωθ − λ

∫ 0

θ
eλ(θ−ξ)eωξ dξ)

= (∆(λ) I −A)−1(∆(ω) I −A)−1 ∆(ω)−∆(λ)

λ− ω
,

Thus we have
û(λ) = (∆(λ) I −A)−1f̂(λ)

and the claim holds. �

When 0 ∈ ρ(A), we let ω = 0 and obtain

u(t) = S(t)A−1f(0)−A−1f(t) +

∫ t

0
S(t− s)A−1f ′(s) ds

=

∫ t

0
Ṡ(t− s)A−1f(s) ds =

∫ t

0
P (t− s)f(s) ds,

(7.5) nhom0

for f ∈W 11(0, T ;X), since

Ṡ =
d

dt
S(t) = P (t)A.

Otherwise, for ω ≥ 0 let y(t) = e−ωtu(t). It can be easily seen that y satisfies∫ t

−∞
g(t− s)e−ω(t−s)y′(s) ds = −ω

∫ t

−∞
g(t− s)e−ω(t−s)y(s) ds+Ay(t) + e−ωtf(t)

with y(s) = 0, s ≤ 0. Since∫ t

0
gε(t− s)e−ω(t−s)y′(s) ds =

∫ t

−∞
(g′ε(t− s)− ω gε(t− s))e−ω(t−s)(y(s)− y(t)) dt,

we have

(∆(ω) I −A)y(t)− lim
ε→0+

∫ t

−∞
g′ε(t− s)e−ω(t−s)(y(t)− y(s)) ds = e−ωtf(t)

Suppose |y(t)| = maxs≤T |y(s)| we have

〈(∆(ω) I −A)y(t), x∗〉 ≤ e−ωt〈f(t), x∗〉

for x∗ ∈ F (y(t)) since g′ε ≤ 0 on R+ and

〈y(t)− y(s), x∗〉 ≥ (|y(t)| − |y(s)|)|y(t)| ≥ 0.

Since A is dissipative we have

|y(t)| ≤ |∆(ω)−1| e−ωt|f(t)|. (7.6) est
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thm6.2 Theorem 7.2. For f ∈ C(0, T ;X) there exists a unique solution u in C(0, T ;X) to
(
nhom
7.1) and it has the representation (

nhom0
7.5);

u(t) =

∫ t

0
P (t− s)f(s) ds.

and for some M >
|u(t)| ≤M |f |C(0,t;X).

Proof: Since C2(0, T ;X) is dense in C(0, T ;X) and A is closed, the theorem follows
from (

est
7.6).

7.1 f ∈ L2(0, T ;H)

Let X = H be a Hilbert space. Since for R > T and 0 ≤ t ≤ T and C1(0, T ;H),∫ t

t−R
g(t− s)(u′(s), u(s)− u(t)) ds =

∫ 0

−R
g(−θ)(u′(t+ θ), u(t+ θ)− u(t)) dθ

=
1

2
(

∫ 0

−R
g′(−θ)|u(t+ θ)− u(t)|2 dθ − g(R)|u(t)− u(0)|2)

and ∫ t

t−R
g(t− s)(u′(s), u(s)) ds =

∫ 0

−R
g(−θ)(u′(t+ θ), u(t+ θ)) dθ

=
d

dt

1

2

∫ 0

−R
g(−θ)|u(t+ θ)|2 dθ,

it follows from∫ T

)
(

∫ t

0
g(t−s)u′(s) ds, u(t)) dt

∫ T

0

∫ t

0
g(t−s)(u′(s), u(t)−u(s)) dsdt+

∫ T

0

∫ t

o
g(t−s)u′(s), u(s)) dsdt

that ∫ 0

−R
g(θ)|u(T + θ)|2 dθ −

∫ 0

−R
g(θ)|x|2 dθ

+

∫ T

0
(

∫ 0

−R
g′(θ)|u(t+ θ)− u(t)|2 dθ + g(−R)|x− u(t)|2) dt

= 2

∫ T

0

∫ t

0
g(t− s)u′(s) ds, u(t)) dt.

(7.7) enrg

Letting R→ T+, we obtain∫ 0

−T
g(θ)|u(T + θ)|2 dθ −

∫ 0

−T
g(θ)|x|2 dθ

+

∫ T

0
(

∫ 0

−t
g′(θ)|u(t+ θ)− u(t)|2 dθ + g(T )|x− u(t)|2) dt = 2

∫ T

0

∫ t

0
g(t− s)u′(s) ds, u(t)) dt.

(7.8) enrg1

Thus, we have
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cor6.1 Theorem 7.3. The energy identity (
enrg1
7.8) holds for all u ∈ L2(0, T ;H) satisfying

∫ t
0 g(t−

s)u′(s) ds ∈ L2(0, T ;H) and for all u(0) = 0.∫ T

0
(

∫ t

0
g(t− s)u′(s) ds, u(t)) dt ≥ g(T ) |

∫ T

0
|u(t)|2 dt).

Assume that there exists ω > 0 such that

(Aφ, φ) ≤ −ω |φ|2, for all φ ∈ dom (A). (7.9) ass

Suppose f(0) = 0 and f ∈ C2(0, T ;H) it follows from (
nhom0
7.5) that u ∈ C1(0, T ;H) ∩

C(0, T ; dom(A)). Then, from (
eneg1
??)∫ 0

−T
g(θ)|u(T + θ)|2 dθ −

∫ 0

−t
g(θ)|x|2 dθ

+

∫ T

0
(−
∫ 0

−T
g′(θ)|u(t+ θ)− u(t)|2 dθ + g(T ) |x− u(t)|2 + ω |u(t)|2) dt ≤ 1

ω

∫ T

0
|f(t)|2 dt.

Otherwise, using exactly the same arguments as for the estimate for C(0, T ;H), we
have∫ 0

−∞
g(θ)eωθ|y(T + θ)|2 dθ − ∆(ω)

ω
|x|2

−
∫ T

0

∫ 0

−∞
g′(t− s)e−ω(t−s)|y(s)− y(t)|2 ds dt+ ω

∫ T

0

∫ 0

−∞
g(t− s)e−ω(t−s)|y(s)|2 ds dt

+

∫ T

0
(∆(ω) I − 2A)y(t), y(t)) dt = 2

∫ T

0
(e−ωtf(t), y(t)) dt

Hence there exits MT such that∫ T

0
|u(t)|2 dt ≤MT

∫ T

0
|f(t)|2 (7.10) est02

Consequently, we have

thm6.3 Theorem 7.4. For f ∈ L2(0, T ;H) there exists a unique solution u in L2(0, T ;H) to
(
nhom
7.1) and it has the representation (

nhom0
7.5) and the energy identity (

enrg1
7.8).

Proof: Since C2(0, T : H) is dense in L2(0, T ;H) and A is closed, the theorem follows
from (

est02
7.10).

corr6.2 Corollary 7.1. Assume there exist a closed subspace V of H and δ > 0 such that

(Aφ, φ) ≤ −δ |φ|2V

Then, for f ∈ L2(0, T ;H) there exists a unique solution u in L2(0, T ;V ) to (
nhom
7.1) and

it has the representation (
nhom0
7.5) and the energy identity∫ t

0
|u(s)|2V ds ≤

1

δ

∫ t

0
|f(s)|2V ∗ ds.

29



8 Dual System and Optimal Control Problems

In this section we consider the dual system to (
fde
1.6) and its application to a class of

optimal control problems.
Let X = H be a Hilbert space. For u, p ∈ C1(0, T ;H) we have∫ T

0
(

∫ t

0
g(t− s)u′(s) ds, p(t)) dt =

∫ T

0
(

∫ T

s
g(t− s)v(t) dt, u′(s)) ds

= −(u(0),

∫ T

0
g(t)v(t) dt)−

∫ T

0
(u(s),

d

ds

∫ T

s
g(t− s)p(t) dt) ds

= (

∫ T

0
g(T − s)u(s) ds, p(T ))− (u(0),

∫ T

0
g(t)p(t) dt)−

∫ T

0
(u(s),

∫ T

s
g(t− s)p′(t) dt) ds.

(8.1) dual

tm7 Theorem 8.1. Let Dg
t : L2(0, T ;H)→ L2(0, T ;H) be

(Dg
t u)(t) =

∫ t

0
g(t− s)u′(s) ds

with domain

dom (Dg
t ) = {u ∈ L2(0, T ;H) : Dg

t u ∈ L2(0, T ;H), u(0+) = 0}

Then, Dg
t is a densely defined, closed operator on L2(0, T ;H) and the adjoint (Dg

t )
∗ is

given by

((Dg
t )
∗p)(s) =

d

ds

∫ T

s
g(t− s)p(t) dt

with domain

dom ((Dg
t )
∗) = {p ∈ L2(0, T ;H) :

∫ T

s
g(t− s)p(t) dt ∈ H1(0, T ;X),

(

∫ T

s
g(t− s)p(t) dt)(T−) = 0}.

Proof: Since for g∗ ∈ L1(0, T ) is defined by (
gs
2.11) and from (

gs0
2.12)

u(t) =

∫ t

0
g∗(t− s)(Dg

t u) ds,

Dg
t is closed. For y = (Dg

t )
∗u,∫ T

0
(y(t), u(t)) dt =

∫ T

0
(

∫ T

s
y(t) dt, u′(s)) ds

and ∫ T

0
(Dg

t u, p(t)) dt =

∫ T

0
(

∫ T

s
g(t− s)p(t) dt, u′(s)) ds.

Since u ∈ dom(Dg
t ) are arbitrary,∫ T

s
g(t− s)p(t) dt =

∫ T

s
y(t) dt, for a.e. s ∈ (0, T ).
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Hence, we obtain

lim
s↑T

(

∫ T

s
g(t− s)p(t) dt) = 0

and

y(s) = (Dg
t )
∗p =

d

ds

∫ T

s
g(t− s)p(t) dt.�

Definition 7.1 (Weak solution) A function u ∈ L2(0, T ;H) is a weak solution to
(
fde
1.6) if∫ T

0
(−
∫ T

s
g(t− s)p′(t) dt+A∗p(s), u(s)) + (p(s), f(s)) ds− (u(0),

∫ T

0
g(t)p(t) dt) = 0

(8.2) weak

for all p ∈ C1(0, T ;H) ∩ C(0, T ; dom(A∗)) satisfying p(T ) = 0.

Theorem 8.2. Weak solutio to(
fde
1.6) is unique

Proof: It follows from Theorem
thm6.3
7.4 that the dual system∫ T

s
g(t− s)p′(t) dt = A∗p(s) + f(s), p(T ) = 0 (8.3) duals

has a solution p ∈ C1(0, T ;H) ∈ C(0;T ; dom(A∗) for all f ∈ C1(0, T ;H) with f(T ) = 0.
Since {f ∈ C1(0, T ;H) with f(T ) = 0 is dense in L2(0, T ;H) the uniqueness follows
from (

weak
8.2). �

Consider the control problem

min

∫ T

0
(`(x(t)) + h(u(t)) dt, (8.4) cost

subject to (
fde
1.6); ∫ t

0
g(t− s)x′(s) ds = Au(t) +Bu(t), x(0) = x0, (8.5) conts

where x(t) ∈ X, a Hilbert space and A is a maximal monotone operator in X Let U
be a Hilbert space and Û is a closed convex set in U and

u ∈ C = {u ∈ L2(0, T ;U) : u(t) ∈ Û , a.e.}

denote the control function and B ∈ L(U,X). The functional ` and h are convex on
X and U , respectively.

cont Theorem 8.3. Problem (
cost
8.4)–(

conts
8.5) has an optimal control u∗ ∈ C.

Proof: Since given u ∈ C (
conts
8.5) has a unique solution x(·;u) ∈ C(0, T ;X). Thus, the

optimal control problem is equivalent to minimizing

J(u) =

∫ T

0
(`(x(t;u)) + h(u(t))) dt
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over u ∈ C. Suppose un ∈ C is a minimizing sequence of J over C, i.e. J(un) ↓ and
limn→∞ J(un) = η = infu∈C J(u). Then there exists a weak convergent subsequence
of (un, xn) to (u∗, x∗) in L2(0, T ;U × X). Since C is weakly closed, u∗ ∈ C. From
(
weak
8.2) it follows that x∗ is a weak solution of (

conts
8.5) corresponding to u∗. Since convex

functionals are weakly sequentially lower semi-continuous, J(u∗) ≤ η, i.e., u∗ ∈ C is
optimal. �

Let ∂`(x∗) be the sub-differential of ` at x∗ ∈ X, i.e.

∂`(x∗) = {λ ∈ X∗ : `(x)− `(x∗) ≥ (λ, x− x∗) for all x ∈ X}.

Define the Lagrange functional

L(x, u, p) =

∫ T

0
(`(x(s)) + h(u(s)) ds+

∫ T

0
(p(s), Ax(s) +Bu(s)− (Dg

t x)(s)) ds.

cont Theorem 8.4. Let u∗ ∈ C be an optimal to problem (
cost
8.4)–(

conts
8.5) and assume ` is C1.

Then,

h(u) + (u,B∗p(t)) ≥ h(u∗(t)) + (u∗(t), Bp(t)) for all u ∈ Û , a.e. t ∈ (0, T )

where the adjoint state satisfies

(Dg
t )
∗p = A∗p(t) + `′(x∗(t)), p(T ) = 0. (8.6) adjt0

Proof: Since `′(x∗) ∈ C(0, T ;X) there exists a unique solution to (
adjt0
8.6), Let u =

u∗ + t (v − u∗) ∈ C with v ∈ C and t ∈ (0, 1) and x be the corresponding solution of
(
conts
8.5) to u. Note that

(`′(x∗), x−x∗) = ((Dg
t )
∗p−A∗p, x−x∗) = (p,Dg

t (x−x∗)−A(x−x∗)) = (p,B(u−u∗)).

Then,

0 ≤ J(u)− J (u∗) =

∫ T

0
(E(x(s), x∗(s)) + (`′(x∗(s)), x(s)− x∗(s)) ds

+

∫ T

0
(h(u(s))− h(u∗(s)) + (p(t), B(u(s)− u∗(s))) ds

(8.7) est7

where
E(x, x∗) = `(x)− `(x∗)− `′(x∗)(x− x∗).

Since
1

t

∫ T

0
E(x(s), x∗(s)) ds→ 0 as t→ 0+

Since h is convex,∫ T

0
(h(u(s))−h(u∗(s))+(p(s), B(u(s)−u∗(s))) ds ≤ t

∫ T

0
(h(v(s))−h(u∗(s))+(p(s), B(v(s)−u∗(s)) ds,

Now, since
1

t

∫ T

0
E(x(s), x∗(s)) ds→ 0 as t→ 0+

letting t→ 0+ in (
est7
8.7), we obtain∫ T

0
(h(v(s))− h(u∗(s)) + (p(t), B(v(s)− u∗(s)) ds ≥ 0

for all v ∈ C, which implies the necessary optimality. �
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9 Case:1 < α < 2

In this section we consider the case when 1 < α < 2;

Dα
t u =

∫ t

0
g2−α(t− s)u′′(s) ds = Au(t) + f(t), , u(0 = u0, u′(0) = v0,

or in general ∫ t

0
g(t− s)u′′(s) ds = Au(t) + f(t), u(0 = u0, u′(0) = v0. (9.1) a1-2

Equivalently, we have

d

dt
u = v and

∫ t

0
g(t− s)v′(s) ds = Au(t) + f(t).

with
u(0) = u0, v(0) = v0.

Assume −A is self-adjoint and positive on a Hilbert space H and define

V = dom((−A)
1
2 ) with |φ|2V = 〈−Aφ, φ〉.

Define a linear operator A on X = V × L2
g(−∞, 0;H) by

A(u, z) = (z(0), z′)

with

dom(A) = {(u, z) ∈ X : A(u, z) ∈ X and

∫ 0

−∞
g(θ)z′(θ) = Au}.

a12 Theorem 9.1. The linear operator A is m-dissipative and A generates a C0 semigroup
T (t) on X. u(t) = (T (t)(u0, v0))1 ∈ C(0, T ;V ) defines a mild solution to (

a1-2
12.4).

Proof: For (u, z) ∈ dom(A)

(A(u, z), (u, z)) = (−Au, z(0)) +
∫ 0
−∞ g(θ)(z′(θ), z(θ)) dθ

=

∫ 0

−∞
g(θ)(z′(θ), z(θ)− z(0)) dθ.

From (
sta0
2.1)

(A(u, z), (u, z)) = − lim
ε→0+

∫ 0

−∞

g(θ)− g(θ − ε))
ε

|z(θ)− z(0)|2 dθ,

and thus

(A(u, z), (u, z)) = −
∫ 0

−∞
g′(θ)|z(θ)− z(0)|2 dθ ≤ 0.

For the resolvent
λ (u, z)−A(u, z) = (f1, f2)
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is equivalent to
λ z − z′ = f2, λ u− z(0) = f1.

From the first equation

z(θ) = eλ θz(0) +

∫ 0

θ
eλ(θ−ξ)f2(ξ) dξ (9.2) Res0

and

λ(

∫ 0

−∞
eλθg(θ) dθ)z(0) +

∫ 0

−∞
g(θ)(λ

∫ 0

θ
eλ(ξ−θ)f2(ξ) dξ − f2(θ)) ds = Au.

From the second equation

u = (λ∆(λ) I −A)−1(∆(λ)f1 +

∫ 0

−∞
g(θ)(f2(θ)− λ

∫ 0

θ
eλ(θ−ξ)f2(ξ) dξ) dθ) (9.3) Res1

and
z(0) = λu− f1. (9.4) Res2

Thus, R(λ I −A) = X. �

It follows from (
Res1
9.3) that u(t) = S1(t)u+ S2(t)v with

S1(t)u =
1

2πi

∫ γ+i∞

γ−i∞
eλt(λ∆(λ) I −A)−1∆(λ)u dλ

S2(t)v =
1

2πi

∫ γ+i∞

γ−i∞
eλt(λ∆(λ) I −A)−1 ∆(λ)

λ
v dλ.

(9.5) sol2

Assume A is a sectorial operator, i.e., there exist M > 0, θ0 > 0 such that

|(λ I −A)−1| ≤ M

|λ|
on Σθ0 = {λ ∈ C : arg(λ) ≤ π

2
+ θ0} ∩ {λ 6= 0}

Assume that if λ ∈ Σθ0 , then λ∆(λ) ∈ Σθ̃ for θ̃ > 0. Let Γθ,δ be the integration path
defined by

Γ± = {z ∈ C : |λ| ≥ δ, arg(λ) = ±(
π

2
+λ)}, Γ0 = {z ∈ C : |z| = δ, |arg(z)| ≤ π

2
+θ}

for some δ > 0 and 0 < θ ≤ θ̃. Then, the solution map S1(t) and S2(t) is given by

S1(t)x =
1

2πi

∫
Γ
eλt(λ∆(λ) I −A)−1∆(λ)x dλ,

S2(t)x =
1

2πi

∫
Γ
eλt(λ∆(λ) I −A)−1∆(λ)λ−1x dλ,

using the Cauchy integral representation (
sol2
9.5) and the analytic continuation. Let

P (t) ∈ L(X), t > 0 be

P (t)x =
1

2πi

∫
Γ
eλt(λ∆(λ) I −A)−1x dλ.
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Then
d

dt
S1(t) = P (t)A

and the solution u(t) to (
a1-2
12.4) is given by

u(t) = S1(t)u0 + S2(t)v0 +

∫ t

0
P (t− s)f(s) ds

for u0, v0 ∈ X and f ∈ C(0, T ;X).

10 Finite Difference Method

In this section we develop the finite difference scheme for (
fde
1.6) and analyze the stability

and the convergence of the scheme for a general class of (
fde
1.6) with maximal monotone

operators A.
Let h > 0 be a stepsize and define

gj =

∫ −jh
−(j+1)h

g(s) ds, j ≤ 0

The sequence {ukj , j ≤ 0} approximating u(kh,−jh) ∈ X is generated by

g0
uk0 − uk−1

h
+

−(k−1)∑
j=−1

gj
ukj − ukj−1

h
= Auk0 + fk

ukj−1 = uk−1
j , j ≤ 0, ukj = x for j ≤ −k.

(10.1) dif

That is,
ukj − u

k−1
j

h
=
ukj − ukj−1

h
(10.2) dif1

approximates
d

dt
u(t+ ·) = Au(t+ ·). Note that

ukj = uk+j
0 = uk+j .

Thus, (
dif
10.1) is equivalent to

g0
uk − uk−1

h
+

−(k−1)∑
j=−1

gj
uk+j − uk+j−1

h
= Auk + fk (10.3) dif0

which is an approximation for (
fde
1.6) directly. We have the following stability results for

(
dif
10.1);

stab1 Theorem 10.1. If A is dissipative, for f = 0 we have |uk0| ≤ |x|. In general we assume
that for all u ∈ dom(A), there u∗ ∈ F (u) such that

〈Au, u∗〉 ≤ −δ |u|2, (10.4) cond1

then

max
0≤k≤N

|uk| ≤ 1

δ
max

0≤k≤N
|fk|.
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Proof:For f = 0 since

−(k−1)∑
j=0

gj
uj − uj−1

h
= −

−(k−2)∑
j=0

gj−1 − gj
h

(uj−1 − u0), (10.5) dif1

it follows from (
dif
10.1) that for u∗ ∈ F (uk0)

〈Auk0, u∗〉 = −
−(k−2)∑
j=0

gj−1 − gj
h

((ukj−1, u
∗)− |uk0|2).

Suppose |u0| > |uj |, j < 0 then

〈Au0, u
∗〉 >

−(k−2)∑
j=0

gj − gj−1

h
(|u0|2 − |ukj−1||u0|) > 0

which contradicts to the fact that A is dissipative. Thus, maxj≤0 |ukj | ≤ maxj≤0 |uk−1
j |.

In general, suppose |uk| ≥ |uj | for 0 ≤ j ≤ N . From (
dif1
10.5)

−〈Auk0, u∗〉 ≤ |uk0||fk|

for u∗ ∈ F (uk0) and thus from (
ccnd
??)

|uk0| ≤
1

δ
|fk|.

Hence we obtain

max
0≤k≤N

|uk| ≤ 1

δ
max

0≤k≤N
|fk|.

Assume X = H is a Hilbert space.

Theorem 10.2. Assume for δ > 0

(Aφ, φ) ≤ −δ|φ|2, φ ∈ dom(A).

For all k ≥ 1

−(k−1)∑
j=0

gj |ukj |2+

k∑
`=1

−(`−2)∑
j=0

gj − gj−1

h
|u`j−u`0|2h+δ

k∑
`=0

|u`0|2 h ≤
−(k−1)∑
j=0

gj |x|2+
1

δ

k∑
`=1

|fk|2 h.

(10.6) est2

Proof: From (
dif1
10.5)

(
ukj − u

k−1
j

h
,
1

2
(ukj + uk−1

j )) =
1

2
(|ukj |2 − |uk−1

j |2) = (
ukj − ukj−1

h
,
1

2
(ukj + ukj−1)),

where

−(k−1)∑
j=0

gj(
ukj − ukj−1

h
,
1

2
(ukj + ukj−1)− uk0) =

1

2

−(k−2)∑
j=0

gj−1 − gj
h

|uk+1
j − uk+1

0 |2 h.
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Since from (
dif
10.1) ∑

j≤0

gj(
ukj − ukj−1

h
, uk0) = (Auk0 + fk, uk0),

summing this over k we obtain

−(k−1)∑
j=0

gj |ukj |2 +

k∑
`=1

−(`−2)∑
j=0

gj − gj−1

h
|u`j − u`0|2h =

−(k−1)∑
j=0

gj |x|2 + 2

k∑
`=1

(Au`0 + f `, u`0)h.

Hence, from the assumption we obtain the desired estimate. �
Now, we have the convergence results;

conv1 Theorem 10.3. We assume

〈Ax1 −Ax2, x
∗〉 ≤ −δ |x1 − x2|2. (10.7) dif2

for some x∗ ∈ F (x1 − x2). Define the linear interpolation

Uh(t) = u(kh) +
t− kh
h

(u(kh)− u((k − 1)h)) if t ∈ (k − 1)h, kh].

Then,
|uh − Uh|L2(0,T ;H) → 0 as h→ 0+.

Proof: If we let Ukj = U((k − j)h) = u((k − j)h), then we have

g0
Uk0 − Uk−1

h
+

−(k−1)∑
j=0

gj
Ukj − Ukj−1

h
= AUk0 + fk + Ek (10.8) form

where

Ek =

∫ 0

−kh
g(θ)(u′(kh+ θ)− U ′(khθ)) dθ → 0

Let X = H be a Hilbert space. The, we have

N∑
`

|E`|2 h→ 0 as h→ 0+

If we define

uh(t) = uk +
t− kh
h

(uk − uk−1) if t ∈ (k − 1)h, kh]

then it follows from (
est2
10.6) and (

dif2
10.7) that

|uh − Uh|L2(0,T ;H) →
1

δ
|Eh|L2(0,T ;H) → 0

as h→ 0+. �
In general, let X be a Banach space and then we have;

Corollary 10.1.
|uh − Uh|C(0,T ;X) → 0, as h→ 0+,

assuming (
dif2
10.7) and f ∈ C(0, T ;X).

Proof: Using the same arguments as above, from (
dif2
10.7) and (

form
10.8) we have

|uh − Uh|C(0,T ;X) ≤
1

δ
|Eh|C(0,T ;X) → 0.�
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10.1 Cone invariance and Maximum Principle

Let H = L2(Ω) and C be a a closed cone in H. A is cone preserving, i.e.,

(I − sA)−1C ⊂ C

for all sufficiently small s > 0. Since

uk = (I − h

g0
A)−1(

−(k−2)∑
j=0

gj − gj−1

g0
uk+j +

hg−(k−1)

g0
u0 + fk)

By induction in k, we have uk ∈ C if u0 ∈ C and fk ∈ C.
Let C = {φ ∈ H : φ ≥ 0 a.e. } Then, uk ≥ 0 a.e. if u0 ≥ 0 and fk ≥ 0.

11 Semi-linear equations

In this section we consider the semilinear equation

Dα
t x = Ax(t) + F (x(t)), x(0) = x0

or equivalently

x(t) = S(t)x0 +

∫ t

0
P (t− s)F (x(s)) ds, t ≥ 0 (11.1) Lip

with the locally Lipschitz function F in X. Assume

|S(t)| ≤ ψ(t) = C min(1, t−α), |P (t)| ≤ C min(t−1+α, t−1).

and that F (0) = 0 and

|F (x)− F (y)| ≤ ρ(M) |x− y| for |x|, |y| ≤M. (11.2) cond

For given f ∈ C(0, T ;X) consider the map from C(0,∞, X) to C(0,∞;X) by

(Ψx)(t) = f(t) +

∫ t

0
P (t− s)F (x(s)) ds (11.3) fixed

First, we establish the local existence of solutions.

Theorem (Local Existence) Assume |f(t)| ≤M0(1+tα). Then, there exists a τ > 0
such that (

fixed
11.3) has a fixed point x ∈ C(0, τ ;X).

Proof: For |x(t)| ≤M on [0, τ ] for some M ≥ 2M0 we have

|
∫ t

0
P (t− s)F (x(s)) ds| ≤

∫ t

0
C(t− s)−1+αMρ(M) ds ≤ CMρ(M)

tα

α

Let τ = τ(M0) is chosen so that

M0(1 + τα) + CMρ(M)
τα

α
≤M, (11.4) tau
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given M0 > 0. It follows from (
cond
11.5)

|(Ψx1)(t)− (Ψx2)(t)| ≤ Cρ(M)
τα

α
|x1 − x2|C(0,τ ;X)

for |x1|, |x2| ≤M . Thus, Ψ has a unique fixed point x ∈ C(0, τ ;X) satisfying |x(t)| ≤
M, t ∈ [0, τ ], provided that (

tau
11.4) holds, since Cρ(M) τ

α

α < 1. �

Hence, given t ≥ 0 for h ≥ 0

x(t+ h) = S(t+ h)x0 +

∫ t

0
P (t+ h− s)F (x(s)) +

∫ t+h

t
P (t+ h− s)F (x(s)) ds

= f(t+ h) +

∫ h

0
P (h− σ)F (x(t+ σ)) dσ

has a unique solution x(t+ h), 0 ≤ h ≤ τ as a fixed point to (
fixed
11.3) with

f(t+ h) = S(t+ h)x0 +

∫ t

0
P (t+ h− s)F (x(s)) ds, ; h ≥ 0

provided that f(t+ h) ≤M0(1 + hα) and some M0.

Next, we establish a priori bound of x(t). Assume x ∈ M min(1, t−α) for some
M > 0 and that

ρ(s)s = sγ .

We will use ∫ t

0
(t− s)−1+δs−δ ds =

1

Γ(1− δ)Γ(δ)

for 0 < δ < 1. Let

I(t) = |
∫ t

0
P (t− s)F (x(s) ds|

For t ≤ 1

I(t) ≤Mγ

∫ t

0
C(t− s)−1+α ds =

CMγ

α
.

For 1 ≤ t ≤ 2

I(t) ≤
∫ t

1
C(t− s)−1+αMγs−γα ds+

∫ 1

0
CMγ(t− s)−1+α ds

≤ CMγ [(t− 1)α − tα +
1

Γ(1− α)Γ(α)
t−α(γ−1)].

For t ≥ 2

I(t) ≤
∫ t

t−1
C(t− s)−1+αMγs−γα) ds+

∫ t−1

1
C(t− s)−1Mγs−γα ds+

∫ 1

0
C(t− s)−1Mγ ds

≤ CMγ [(t− 1)−γαtα + 1
Γ(δ)Γ(1−δ)M

γ + (t− 1)−1tα]t−α

with δ = α(γ − 1). It thus follows that there exists β independent of t ≥ 0 such that

I(t) ≤ βCMγ min(1, t−α)
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It can be proved that if M0 > 0 is sufficiently small there exists M > 0 such that

M0 + βCMγ ≤M. (11.5) cond

Theorem (Asymptotic Stability) Assume ρ(s)s = sγ and condition (
cond
11.5) holds.

Then, (
Lip
11.1) has a unique solution in C(0,∞;X) satisfying |x(t)| ≤M min(1, t−α).

Proof: Using exactly the same arguments as above, without loss of the generality with
same β > 0 we have

|Ψx1 −Ψx2| ≤ βCMγ−1|x1 − x2|.

The claim follows since βCMγ−1 < 1. �

11.1 Sectorial Case

Assume there exits α1, α2 ≥ 0 such that

|A−α1(F (x)− F (y))| ≤ ρ(M) |Aα2(x− y)| for |Aα2x|, |Aα2y| ≤M. (11.6) cond1

and
|A−α1F (0)|X ≤ c. (11.7) cond2

with 0 ≤ α1 + α2 < 1. Let Xα2 = dom(Aα2). For u ∈ C([0, τ ], Xα2) define the map

(Ψ(u))(t) = S(t)x0 +

∫ t

0
P (t− s)F (u(s)) ds.

Theorem 11.1. (Local Existence) For x0 ∈ Xα2 there exists a τ > 0 such (
Lip
11.1)has a

unique solution u ∈ C(0, τ ;Xα2).

Proof: For u(̧0, τ,Xα2) satisfying |u| ≤M on [0, τ ] it follows from Corollary
cor5.4
5.4 that

|Aα2Ψ(u)| = |S(t)||Aα2x0|+ |
∫ t

0 A
α1+α2P (t− s)A−α1F (u(s)) ds|.

≤ |Aα2x|+
∫ t

0
C(t− s)−β(ρ(M)M + c) ds

≤ |Aα2x|+ (
C

1− β
τ1−β(ρ(M)M + c)

where β = α (1− (α1 + α2)). Let τ = τ(M0) such that

M0 +
C

1− β
τ1−β(ρ(M)M + c) ≤M

given M0 = |Aα2x0|. It follows from (
cond1
11.6) that

|Aα2(Ψ(u1)−Ψ(u2))| ≤ C

1− β
τ1−βρ(M) |Aα2(u1 − u2)|

Thus, Ψ has a unique fixed point in x ∈ C(0, τ,Xα2) satisfying |Aα2x(t)| ≤M on [0, τ ],
which defines a solution to (

Lip
11.1) �
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12 Examples

In this section we discuss the application of our theory for concrete examples.

12.1 Fractional Parabolic equations

Let Ω is a bounded open set in Rd. Consider the fractional parabolic equation

Dα
t u = ∇ · (a(x)∇u) + b(x) · ∇u+ f(x, u), (12.1) parab

where u ∈ C([0, τ ] × Ω) and f : Rd × R → R is locally Lipschitz function. Define the
second order elliptic operator

Au = ∇(a(x)∇u) + b(x) · ∇u

with a ∈ Rd×d ∈ C1(Ω) is symmetric and positive definite and b ∈ C(Ω). The linear
operator A with

dom (A) = {u ∈ C2(Ω) ∩H1
0 (Ω)}

is dissipative in X = C(Ω). In fact, if u(ζ0) ≥ |u| for ζ0 ∈ Ω, then (∇u)(ζ0) = 0 and
H(x0) ≤ 0. and

(Au)(ζ0) = tr a(ζ0)H(ζ0) + (∇ · a+ b) · (∇u)(ζ0) ≤ 0

where Hi,j = uxi,xj is the Hessian of u. Similarly, if u(ζ0) ≤ |u|, then (Au)(ζ0) ≥ 0.
Define the nonlinear operator by

(F (u))(x) = f(x, u(x))

We assume f(0) = 0 and

|f(x)− f(y)| ≤ ρ(M) |x− y| for |x|, |y| ≤M. (12.2) assm

Then, (
cond
11.5) is satisfied and it follows from Theorem that (

parab
12.1) has a local in time

solution u ∈ C([0, τ ] × Ω). Moreover, if f(x, u)u ≤ 0, then the solution u is global in
time and |u(t)|X ≤ |u0|X .

12.2 Fractional Scalar conservation law

In this section we consider the scalar conservation law

Dα
t u+ (f(u))x + f0(x, u) = 0, t > 0 u(x, 0) = u0(x), x ∈ Rd (12.3) fcon

where f : R→ Rd is C1. Let X = L1(Rd) and define

Au = −(f(u))x,

where we assume f0 = 0 for the sake of simplicity of our presentation. Define

Aφ = φ′(θ)

with domain

dom(A) = {
∫ 0

−∞
g(θ)φ′(θ) dθ = Aφ(0)}.
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Let
C = {φ ∈ Z : φ ≥ 0}.

Since Ac = 0 for all constant c, it follows that

φ− c ∈ C =⇒ (I − λA)−1φ− c ∈ C.

Similarly,
c− φ ∈ C =⇒ c− (I − λA)−1φ ∈ C.

Thus, without loss of generality, one can assume f is bounded. Let ρ ∈ C2(R) be
a monotonically increasing function satisfying ρ(0) = 0 and ρ(x) = sgn(x), |x| ≥ 1.
Note that

−(f(u1)x − f(u2)x, ρ(u1 − u2)) = (f(u1)− f(u2), ρ′(u1 − u2) (u1 − u2)x),

= (η, ρ′(u1 − u2) (u1 − u2)x(u1 − u2)),

where

η =

∫ 1

0
fu(u2 + τ (u1 − u2)) dτ.

If we define Ψ(x) =
∫ x

0 σρ
′(σ) dσ, then

(η (u1 − u2), ρ′(u1 − u2) (u1 − u2)x) = −(Ψ(u1 − u2), ηx)

where uτ = u2 + τ (u1 − u2) and

ηx =

∫ 1

0
(fxu(s, x, uτ ) + fuu(s, x, uτ )(uτ )x) dτ.

Define ρε(x) = ρ(xε ) for ε > 0. Then

|(η (u1 − u2), ρ′ε(u1 − u2) (u1 − u2)x)| = ε (Ψ(
u1 − u2

ε
), ηx) ≤ const ε |ηx|1 → 0

as ε→ 0. Note that for u ∈ L1(Rd)

(u, ρε(u))→ |u| and (ψ, ρε(u))→ (ψ, sgn0(u)) for ψ ∈ L1(Rd)

as ε→ 0+. Thus,
〈Au1 −Au2, sgn0(u1 − u2)〉 ≤ 0

and A is monotone. It is show in
IK
[2] that

range(λ I −A) = X,

i.e., for any g ∈ X there exists an entropy solution satisfying

(sign(u− k)(λu− g), ψ) ≤ (sing(u− k)(f(u)− f(k)), ψx)

for all ψ ∈ C1
0 (Rd) and k ∈ R. Hence A has a maximal monotone extension in L1(Rd).
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12.3 Fractional Hamilton-Jacobi equation

Let u is a solution to a scalar conservation inR1, then v =
∫ x

u dx satisfies the fractional
Hamilton-Jacobi equation

Dα
t v + f(vx) = 0.

Let X = C0(Rd) and

Av = −f(vx) dom(A) = {f(vx) ∈ X}

Then, for v1, v2 ∈ C1
(R

d)

〈A(v1 − v2), δx0〉 = −(f((v1)x(x0))− f((v2)x(x0))) = 0

where x0 ∈ Rn such that |v|X = |v(x0)|. It also can be proved
IK
[2] that

range(λ I −A) = X for λ > 0.

That is, there exists a unique viscosity solution to λv − f(vx) = g; for all φ ∈ C1(Ω) if
v − φ attains a local maximum at x0 ∈ Rd, then

λ v(x0)− g(x0) + f(φx(x0)) ≤ 0

and if v − φ attains a local minimum at x0 ∈ Rd, then

λ v(x0)− g(x0) + f(φx(x0)) ≥ 0.

12.4 Fractional Semilinear wave equation

In this section we consider the fractional semilinear wave equation of the form;

Dtαu
′(s) ds = A0u(t) + F (u(t)), u(0 = u0, u′(0) = v0. (12.4) a1-2

Let−A0 be a positive self-adjoint operator on a Hilbert spaceH. V = dom(−(A0)
1
2 )

12.5 Fractional Navier Stokes

In this section we discuss a fractional incompressible Navier Stokes equation

Dα
t u+ u · ∇u+ grad p = ν∆u

divu = 0
(12.5) NS

where u is the velocity field defined on domain Ω with Lipschitz boundary Γ and p is
the pressure. Let V be the divergence free closed subspace of H1

0 (Ω)d:

V = {u ∈ H1
0 (Ω)d : divu = 0}

and X be the closure of V with respect to L2(Ω)d norm:

X = {u ∈ H1
0 (Ω)d : divu = 0, n· = 0 at Γ}
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Let P be the orthogonal projection of L2(Ω)d onto X and define the Stokes operator
−A by

−Au = P∆u with dom (A) = H2(Ω)d ∩ V

and the convection
F (u) = −P (u · ∇u) for u ∈ V

Then, (
NS
12.5) is equivalently written as

Dα
t u = Au+ F (u).

The Stokes operator −A is positive self-adjoint operator X with dom ((−A)1/2) = V .
Moreover,

|F (u)− F (v)|V−1/2
≤ c |u− v|V (|u|V + |v|V ),

where V1/2 = dom((−A)1/4 and thus (
cond1
11.6) is satisfied with α1 = 1

4 , α2 = 1
2 . It follows

from Theorem that (
NS
12.5) has a local solution u ∈ C(0, τ, V ) in time, satisfying

u(t) = S(t)x+

∫ t

s
P (t− s)F (u(s)) ds.

13 Space varying model

In this section we consider space varying cases;
Case 1 (Space varying fraction 0 ≤ α(x) < 1)∫ t

0

u′(x, s)

(t− s)−α(x)
ds ∈ Au(x, t) + f(t). (13.1) fdes1

Case 2 (Space varying weight 0 ≤ g̃(x, s))∫ t

0

(t− s)−α

Γ(1− α)
u′(x, s) ds+

∫ t

0
g̃(x, t− s)u′(x, s) ds ∈ Au(x, t) + f(t). (13.2) fdes2

Assume X is a Banach space and A ⊂ X ×X is dissipative. Let Z = C(−∞, 0];X)
and Az = z′(θ) in Z For Case 1 define g(x, θ) = |θ|−α(x) for x ∈ Ω and θ ∈ (0,−∞).
For Case 2 assume s→ g(x, s) is decreasing for every x ∈ Ω and set g(x, θ) = gα(|θ|) +
g̃(x, |θ|) Note that θ → g(x, θ) is monotonically increasing for every x ∈ Ω. Define

dom(A) = {z′ ∈ Z, z(0) ∈ dom(A) and

∫ 0

−∞
g(x, θ)z′(x, θ) ∈ Az(0)

Using exactly the same arguments as for Theorem 3.1, A is maximal monotone in Z
and generate a nonlinear semigroup on Z. Thus Both (

fdes1
13.1) and (

fdes2
13.2) has a unique

mild solution u ∈ C(0, T ;X).
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14 Fractional equations in Space

In this section we consider the nonlocal diffusion equation of the form

ut = Au =

∫
Rd
J(z)(u(x+ z)− u(x)) dz.

Or, equivalently

Au =

∫
(R)d)+

J(z)(u(x+ z)− 2u(x) + u(x− z)) dz

for the symmetric kernel J in R. It will be shown that

(Au, φ)L2 =

∫
Rd

∫
(R)d)+

J(z)(u(x+ z)− u(x))(φ(x+ z)− φ(x)) dz dx

and thus A has a maximum extension.
Also, the nonlocal Fourier law is given by

Au = ∇ · (
∫
Rd
J(z)∇u(x+ z) dz).

Thus,

(Au, φ)L2 =

∫
Rd×Rd

J(z)∇u(x+ z) · ∇φ(x) dz dx

Under the kernel J is completely monotone, one can prove that A is a maximal mono-
tone extension.

14.1 Jump diffusion Model for American option

In this section we discuss the American option for the jump diffusion model

ut + (x− σ2

2
)ux +

σ2x2

2
uxx +Bu+ λ = 0, u(T, x) = ψ,

(λ, u− ψ) = 0, λ ≤ 0, u ≥ ψ

where the generator B for the jump process is given by

Bu =

∫ ∞
−∞

k(s)(u(x+ s)− u(x) + (es − 1)ux) ds.

The CMGY model for the jump kernel k is given by

k(s) =


Ce−M |s||s|1+Y = k+(s) s ≥ 0

Ce−G|s||s|1+Y = k−(s) s ≤ 0

Since∫ ∞
−∞

k(s)(u(x+ s)− u(x) ds =

∫ ∞
0

k+(s)(u(x+ s)− u(x)) ds+

∫ ∞
0

k−(s)(u(x− s)− u(x)) ds

=

∫ ∞
0

k+(s) + k−(s)

2
(u(x+ s)− 2u(x) + u(x− s)) ds+

∫ ∞
0

k+(s)− k−(s)

2
(u(x+ s)− u(x− s)) ds.
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Thus, ∫ ∞
−∞

(

∫ ∞
−∞

k(s)(s)(u(x+ s)− u(x) ds)φdx

=

∫ ∞
−∞

∫ ∞
0

ks(s)(u(x+ s)− u(x))(φ(x+ s)− φ(s)) ds dx

+

∫ ∞
−∞

(

∫ ∞
0

ku(s)(u(x+ s)− u(s)))φ(x) dx

where

ks(s) =
k+(s) + k−(s)

2
, ku(s) =

k+(s)− k−(s)

2

and hence

(Bu, φ) =

∫ ∞
−∞

∫ ∞
−∞

ks(s)(u(x+ s)− u(x))(φ(x+ s)− φ(s)) ds dx

+

∫ ∞
−∞

(

∫ ∞
−∞

ku(s)(u(x+ s)− u(s)))φ(x) dx+ ω

∫ ∞
−∞

uxφdx.

where

ω =

∫ ∞
−∞

(es − 1)k(s) ds.

If we equip V = H1(R) by

|u|2V =

∫ ∞
−∞

∫ ∞
−∞

ks(s)|u(x+ s)− u(x)|2 ds dx+
σ2

2

∫ ∞
−∞
|ux|2 dx,

then A+B ∈ L(V, V ∗) and A+B generates the analytic semigroup on X = L2(R).

14.2 Numerical approximation of nonlocal operator

In this section we describe our higher order integration method for the convolution;∫ ∞
0

k+(s) + k−(s)

2
(u(x+s)−2u(x)+u(x−s)) ds+

∫ ∞
0

k+(s)− k−(s)

2
(u(x+s)−u(x−s)) ds.

For the symmetric part,∫ ∞
−∞

s2ks(s)
u(x+ s)− 2u(x) + u(x− s)

s2
ds,

where we have

u(x+ s)− 2u(x) + u(x− s)
s2

∼ uxx(x) +
s2

12
uxxxx(x) +O(s4)

We apply the fourth order approximation of uxx by

uxx(x) ∼ u(x+ h)− 2u(x) + u(x− h)

h2
− 1

12

u(x+ 2h)− 4u(x) + 6u(x)− 4u(x− h) + u(x− 2h)

h2

46



and we apply the second order approximation of uxxxx(x) by

uxxxx(x) ∼ u(x+ 2h)− 4u(x) + 6u(x)− 4u(x− h) + u(x− 2h)

h4
.

Thus, one can approximate∫ h
2

−h
2

s2ks(s)
u(x+ s)− 2u(x) + u(x− s)

s2
ds

by

ρ0 (
uk+1 − 2uk + uk−1

h2
− 1

12

uk+2 − 4uk+1 + 6uk − 4uk−1 + uk−2

h2
)

+
ρ1

12

uk+2 − 4uk+1 + 6uk − 4uk−1 + uk−2

h2
,

where

ρ0 =

∫ h
2

−h
2

s2ks(s) ds and ρ1 =
1

h2

∫ h
2

−h
2

s4ks(s) ds.

The remaining part of the convolution∫ (k+ 1
2

)h

(k− 1
2

)h
u(xk+j + s)ks(s) ds

can be approximated by three point quadrature rule based on

u(xk+j + s) ∼ u(xk+j) + u′(xk+j)s+
s2

2
u′′(xk+j)

with

u′(xk+j) ∼
uk+j+1 − uk+j−1

2h

u′′(xk+j) ∼
uk+j+1 − 2uk+j + uk+j−1

h2
.

That is, ∫ (k+ 1
2

)h

(k− 1
2

)h
u(xk+j + s)ks(s) ds

∼ ρk0uk+j + ρk1
uk+j−1 − uk+j+1

2
+ ρk2

uj+k+1 − 2uk+j + uj+k−1

2

where

ρk0 =
∫ (k+ 1

2
)h

(k− 1
2

)h
ks(s) ds

ρk1 = 1
h

∫ (k+ 1
2

)h

(k− 1
2

)h
(s− xk)ks(s) ds

ρk2 = 1
h2

∫ (k+ 1
2

)h

(k− 1
2

)h
(s− xk)2ks(s) ds.
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For the skew-symmetric integral∫ h
2

−h
2

ku(s)(u(x+ s)− u(x− s)) ds ∼ ρ2 ux(x) +
ρ3

6
h2 uxxx(x)

where

ρ2 =

∫ h
2

−h
2

2sku(s) ds, ρ3 =
1

h2

∫ h
2

−h
2

2s3ku(s) ds.

We may use the forth order difference approximation

ux(x) ∼ u(x+ h)− u(x− h)

2h
− u(x+ 2h)− 2u(x+ h) + 2u(x− h)− u(x− 2h)

6h

and the second order difference approximation

uxxx(x) ∼ u(x+ 2h)− 2u(x+ h) + 2u(x− h)− u(x− 2h)

h3

and obtain∫ h
2

−h
2

ku(s)(u(x+ s)− u(x− s)) ds

∼ ρ2 (
uk+1 − uk−1

2h
− uk+2 − 2uk+1 + 2uk−1 − uk−1

6h
) +

ρ3

6

uk+2 − 2uk+1 + 2uk−1 − uk−1

h
.

15 Eigenvalue Problems for Fractional Opera-

tors

In this section we consider the eigenvalue problem for the fractional differential oper-
ator. Given the potential function q ∈ L∞(0, 1) consider the eigenvalue problem

Au = −
∫ t

0

(t− s)−α

Γ(1− α)
u′′(s) ds+ q(t)u(t) = λu(t)

with
dom (A) = {u ∈ H1(0, 1) : u′ ∈ dom(Dα

t ) with u(0) = u(1) = 0}.

Since∫ 1

0
(

∫ t

0

(t− s)−α

Γ(1− α)
u′′(s) ds)φ(t) dt =

∫ 1

0
(

∫ 1

s

(t− s)−α

Γ(1− α)
φ(t) dt)u′′(s) ds

= u′(1)(

∫ 1

s

(t− s)−α

Γ(1− α)
φ(t) dt)(1−)− u′(0)

∫ 1

0

t−α

Γ(1− α)
φ(t) dt−

∫ 1

0
u′(s)

d

ds

∫ 1

s

(t− s)−α

Γ(1− α)
φ(t) dt

= u′(1)(

∫ 1

s

(t− s)−α

Γ(1− α)
φ(t) dt)(1−)− u′(0)

∫ 1

0

t−α

Γ(1− α)
φ(t) dt+

∫ 1

0
u(s)

d2

ds2

∫ 1

s

(t− s)−α

Γ(1− α)
φ(t) dt ds,

the adjoint operator of A is given by

A∗φ = − d

ds

∫ 1

s

(t− s)−α

Γ(1− α)
φ′(t) dt+ q(s)φ(s)
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with

dom (A∗) = {φ ∈ L2(0, 1) :

∫ 1

s

(t− s)−α

Γ(1− α)
φ(t) dt ∈ H2(0, 1) ∩H1

0 (0, 1)}

= {φ ∈ H1(0, 1) : φ(1) = 0;

∫ 1

0

t−α

Γ(1− α)
φ(t) dt = 0,

∫ 1

s

(t− s)−α

Γ(1− α)
φ′(t) dt ∈ H1(0, 1)}

Thus, dom (A) 6= dom (A∗) and A is not self-adjoint. Note that

(φ,A∗φ) =

∫ 1

0
φ′(s)D1

sφds.

With zero extension of φ to we have∫ 1

0
φ′(s)D1

sφds. =

∫
(i ω)1+α|φ̂(ω)|2

where φ̂ is the Fourier transform of φ.
We develop a numerical method that approximates A and A∗ simultaneously. It is

based on the Legendre-tau method []. We use the Legendre approximation

ũN (t) =
N∑
k=0

uk Lk(2t− 1)

where Lk(·) is the k-th Legendre polynomial on [−1, 1]. The boundary condition
uN (0) = uN (1) = 0 implies

uN = −
∑
k:even

uk, uN−1 =
∑
k:odd

uk (15.1) Leg

if N is even and
uN = −

∑
k:odd

uk, uN−1 =
∑
k:even

uk (15.2) Leg2

if N is odd. Thus, {uk}N−2
k=0 defines the approximations

uN =

N−2∑
k=0

uk Lk(2t− 1)

and
ũN = uN + uN−1 LN−1(2t− 1) + uN LN (2t− 1).

where uN−1 and uN are defined by (
Leg
15.1)–(

Leg2
15.2). The Legendre-tau approximation

AN : Xn−2 → XN−2 is defined by

ANuN = PN−2AũN ,

where PN−2 is the orthogonal projection of L2(0, 1) onto

XN−2 = {u ∈ L2(0, 1);u =

N−2∑
k=0

uk Lk(2t− 1)}.
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That is,

(ANuN )j =

∫ 1

0
Lj(2t− 1)

(
−
∫ t

0

(t− s)−α

Γ(1− α)
(ũN )′(s) ds+ q(t)uN (t)

)
dt.

Since (ũN )′′ ∈ XN−2, for φN ∈ XN−2

(ANuN , φN ) =

∫ 1

0
(ũN )′′(PN−2

∫ 1

s

(t− s)−α

Γ(1− α)
φN (t) dt+βN−1LN−1(2s−1)+βNLN (2s−1))

where we let
βN = −

∑
k:even

βk, βN−1 = −
∑
k:odd

βk

and

PN−2

(∫ 1

s

(t− s)−α

Γ(1− α)
φN (t) dt

)
=

N−2∑
k=0

βk Lk(2s− 1).

It thus follows that (A∗)N ∈ L(XN−2, XN−2) is given by

(A∗)NφN =
d2

ds2

(
PN−2

∫ 1

s

(t− s)−α

Γ(1− α)
φN (t) dt+ βN−1LN−1(2s− 1) + βNLN (2s− 1)

)
+PN−2(q(s)φN ).

16 Appendix: Derivation

Let us consider the continuous time random walk (CTRW) process x(t) on R which
is characterized by the joint probability density function (pdf) ϕ(ξ, τ) of jumps ξ =
x(tj)− x(tj−1) and waiting times τj = tj − tj−1. We assume jumps and waiting times
are independent, i.e., ϕ = λ(ξ)ψ(τ). The jump pdf λ(ξ) represents the pdf of jump
size ξ and the waiting time pdf ψ(τ) represents the pdf of waiting time τ . Thus,∫ t

0
ψ(τ) dτ

gives the probability tat at least one jump is taken in (0, t).

Ψ(t) = 1−
∫ t

0
ψ(τ) dτ

defines the probability of no jump occurs during (0, t]. Let us denote by p(x, t) the
pdf of reaching to position x after time t, i.e. p(x, 0) = δ(x). The master equation of
CTRW is given by

p(x, t) = δ(x)Ψ(t) +

∫ t

0
ψ(t− t′)

∫ ∞
−∞

λ(x− x′)p(x′, t′) dx′dt′. (16.1) CTRW

Taking the Laplace transform in t and the Fourier transform in x of (
CTRW
16.1), we obtain

the Montroll-Weiss equation

p̂(k, s) =
Ψ̂(s)

1− λ̂(k)ψ̂(s)
=

1− ψ̂(s)

s

1

1− λ̂(k)ψ̂(s)
. (16.2) MW
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In order to derive an evolution equation of Fokker-Planck-Kolmogorov type we rewrite
(
MW
16.2) as

Φ̂(s)(sp̂(k, s)− 1) = (λ̂(k)− 1)p̂(k, s), (16.3) CTRW1

where

Φ̂(s) =
1− ψ̂(s)

sψ̂(s)
=

Ψ̂(s)

ψ̂(s)
=

Ψ̂(s)

1− sΨ̂(s)
.

Taking the inverse transforms of (
CTRW1
16.3), we obtain the evolution equation for p;∫ t

0
Φ(t− s) ∂

∂t
p(x, s) ds = −p(x, t) +

∫ ∞
−∞

λ(x− x′)p(x′, t) dx′, (16.4) CTRW2

where

Φ(t) = L−1{ Ψ̂(s)

1− sΨ̂(s)
}

and

Ψ(t) =

∫ t

0
Φ(t− s)ψ(s) ds.

If Φ̂(s) = 1 and thus ψ(t) = Ψ(t) = e−t, it reduces to the Kolmogorov-Feller equation

∂

∂t
p(x, t) = −p(x, t) +

∫ ∞
−∞

λ(x− x′)p(x′, t) dx′.

If we assume λ is symmetric,

−p(x, t) +

∫ ∞
−∞

λ(x− x′)p(x′, t) dx′ =
∫ ∞

0
λ(s)(p(x+ s)− 2p(x) + p(x− s)) ds

and thus ∫ ∞
−∞

[

∫ ∞
0

λ(s)(p(x+ s)− 2p(x) + p(x− s)) dsψ(x) dx

= −
∫ ∞

0
λ(s)

∫ ∞
−∞

(p(x+ s)− p(x))(ψ(x+ s)− ψ(x)) dx.

Hence, the right hand side defines a self-adjoint nonnegative definite operator A on
L2(R).

17 Fractional diffusion equation via Homoge-

nization

In this section we discuss an example of fractional diffusion equation which is derived
by the homogenization method. is presented. This method uses a small parameter
which measures the characteristic length of the period (i.e. of the heterogeneities)
compared to a macroscopic length. In Section 3, the classical
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Consider a diffusive mass transport of chemical specifies through a rigid porous
saturated composite, consisting of tow porous materials;

∂c

∂t
= ∇ · (D(

x

ε
)∇c+ b(

x

ε
) c) (17.1) model

where we assume the periodic diffusive media D(xε ) and the periodic advection b(xε )
with period ε and they are given by

D(y) = ε2D2 χΩ2(y) +D1 χΩ1(y), b(y) = ε2b2 χΩ2(y) + b1 χΩ1(y),

Here subdomains Ω1 and Ω2 are for each composite and are disjoint and

Ω1 ∪ Ω2 = [0, 1]d = Ω. Γ = Ω1 ∩ Ω2.

Here ε > 0 is a small parameter which measures the characteristic length of the period
of the heterogeneities compared to a macroscopic length. the heterogeneity reflects
that Ω1 is a diffusive (fluid) medium and Ω2 is a less diffusive (solid) medium with
ration ε2. It follows from [Auriault&Lewandowka] that the homogenized equation as
ε→+ is given by

|Ω1

|Ω|
∂c

∂t
+

∫ t

0
K(t− s)∂c

∂s
ds = ∇ · (Deff∇c+ beff c), (17.2) hom0

where

L(K) = 〈1− k̂〉 =
1

|Ω|

∫
Ω2

(1− k̂) dy

and the Y−periodic k̂ satisfies

∇y · (D2∇yk̂) = p (k̂ − 1), y ∈ Ω2 k̂ = 0 at Γ.

and Deff and beff are defined by (
homo3
17.11).

In what follows we give a sketch of the derivation of (
hom0
17.2). Let y = x

ε and assume
the expansion;

c1 = c0
1(x, y, t) + ε c1

1(x, y, t) + ε2 c2
1(x, y, t) + · · ·

c2 = c0
2(x, y, t) + ε c1

2(x, y, t) + ε2 c2
2(x, y, t) + · · · .

Substituting this into (
model
17.1) and using the calculus;

∇c(x, y, t) = ∇xc(x, y, t) +
1

ε
∇yc(x, y, t)

and taking the Laplace transform of the resulting equation in time, it results in the
following order terms.
ε−2 order:

∇y · (D1∇y ĉ0
1) = 0, y ∈ Ω1 and n · (D1∇y ĉ0

1) = 0, y ∈ Γ (17.3) order-2

ε−1 order:

∇y · (D1∇xĉ0
1 + b1ĉ

0
1) +∇x · (D1∇y ĉ0

1) +∇y · (D1∇xĉ1
1) = 0, y ∈ Ω1

n · (D1∇y ĉ1
1 +D1∇xĉ0

1 + b1ĉ
0
1) = 0, y ∈ Γ

(17.4) order-1

52



ε0 order:

∇x · (D1∇xĉ0
1 + b1ĉ

0
1) +∇x · (D1∇y ĉ1

1) +∇y · (D1∇xĉ1
1 + b1ĉ

1
1) +∇y · (D1∇y ĉ2

1) = pĉ0
1, y ∈ Ω1

n · (D1∇y ĉ2
1 +D∇xĉ1

1 + b1ĉ
1
1) = n · (D2∇y ĉ0

2), y ∈ Γ
(17.5) order0-1

and
∇y · (D2∇y ĉ0

2) = pĉ0
2, y ∈ Ω2. (17.6) order0-2

From (
order-2
17.3) ĉ0

1 = ĉ(x, p) in which (x, p) acts as the parameter. Thus, from (
order-1
17.4)

we have
∇y · (D1∇xĉ0

1 + b1ĉ
0
1) + +∇y · (D1∇y ĉ1

1) = 0, y ∈ Ω1

n · (D1∇y ĉ1
1 +D1∇xĉ0

1 + b1ĉ
0
1) = 0, y ∈ Γ

and for ψ ∈ H1
per(Y ) we have∫

Ω1

(D1∇y ĉ1
1,∇yψ) = −

∑
i,j

∂

∂xj
ĉ1

0

∫
Ω1

(D1)ij
∂ψ

∂yi
− ĉ0

1

∫
Ω1

b1,∇yψ) dy (17.7) id1

Let Y− periodic functions wk, v ∈∈ H1(Ω1) satisfy∫
Ω1

(D1∇ywk,∇yψ) = −
∫

Ω1

(D1e
k,∇yψ) dy

∫
Ω1

(D1∇yv,∇yψ) = −
∫

Ω1

(b1,∇yψ) dy

(17.8) homo

for all ψ ∈ H1
per(Y ). It follows from (

id1
17.7) that

ĉ1
1 =

∑
k

wk(y)
∂

∂xk
ĉ0

1 + v(y) ĉ0
1 + c̃(x, p). (17.9) homo1

From (
order0-2
17.6)

∇y · (D2∇y(ĉ0
2 − ĉ) = p(ĉ0

2 − ĉ+ ĉ), ĉ0
2 − ĉ = 0 at Γ,

and thus
ĉ0

2 = (1− k̂)ĉ, (17.10) homo2

where Y−periodic function k̂ satisfies

∇y · (D2∇yk̂) = p(k̂ − 1), y ∈ Ω2, k̂ = 0 on Γ.

Integrating (
order0-1
17.5) with respect to y on Ω1, we obtain∫

Ω1

∇x · (D1∇xĉ0
1 + b1ĉ

0
1) dy +

∫
Ω1

∇x · (D1∇y ĉ1
1) dy +

∫
Γ
n · (D2ĉ

0
2) ds = p|Ω1| ĉ

From (
homo1
17.9)

1

|Ω|
(

∫
Ω1

∇x · (D1∇xĉ0
1 + b1ĉ

0
1) dy +

∫
Ω1

∇x · (D1∇y ĉ1
1) dy) = ∇x(Deff∇xĉ+ beffĉ)
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where

(Deff)kj =
1

|Ω|

∫
Ω1

D1(Ikj +
∂wk

∂yj
) dy

beff =
1

|Ω|

∫
Ω1

(b1 +D1∇v) dy.

(17.11) homo3

From (
order0-2
17.6) and (

homo2
17.10)

1

|Ω|

∫
Γ
n · (D2ĉ

0
2) ds = − 1

|Ω|

∫
Ω1

p(1− k̂) dy ĉ

Hence we obtain

∇x(Deff∇xĉ+ beffĉ) +
1

|Ω|

∫
Ω1

(1− k̂) dy pĉ =
|Ω1|
|Ω|

pĉ.

which implies (
hom0
17.2).

If û = 1− k̂ we have
D2 ∆û = p û

û = 1 at Γ
(17.12) hom

For Ω2 = {|r| ≤ r0} in R3 the radial solution û = û(r) satisfies

(ru)′′ = pr u(r)

Thus,

û(r) =
r0

r

sinh(
√
pr)

sinh(
√
pr0)

and

〈û〉 =
4πr2

0√
p

coth(
√
pr0)− 4πr0

p
.

In general, from (
hom
17.12) by the divergence theory

p〈û〉 =

∫
Γ

∂

∂ν
û ds.

Since at x∗ ∈ Γ
∂2

∂ν2
û+ ∆τ û = pû

and û = 1 on Γ, we have
∂2

∂ν2
û− κ ∂

∂ν
û = pû,

where κ is the curvature of Γ at x∗. It can be shown that

∂

∂ν
û ∼ √p

for p >> 1, since
û ∼ e

√
p (x−x∗)·ν at x∗ ∈ Γ.
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Thus, for p >> 1

〈û〉 ∼ |Γ|
|Ω|

1
√
p

and

K(t) ∼ |Γ|
|Ω|

t−
1
2

Γ(1
2)
.

It thus follows from (
hom0
17.2) that

|Ω1|
|Ω|

∂

∂t
c+
|Γ|
|Ω|

D
1
2
t c = ∇ · (Deff∇c+ beff c).
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