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1 IntrodutionWe onsider the following optimal ontrol problem in Hilbert spaes X andW : minimize the performane index(1.1) Z T10 f 0(x(t); u(t)) dtsubjet to(1.2) ddtx(t) = f(x(t); u(t)); for t > 0; x(0) = x0; and u(t) 2 U:Here U is a losed onvex subset of W . We refer to x(�) and u(�) as stateand ontrol funtions with x(t) 2 X and u(t) 2 U .For the purpose of this introdutory disussion we assume that for everyx0 2 X and u 2 Uad = fu 2 L2̀o(0;1;W ) : u(t) 2 U a:e:g there existsan X-valued ontinuous semi-ow x(t) = x(t; x0; u) whih is a weak solutionto (1.2). Under appropriate onditions (1.1){(1.2) admits a solution whihsatis�es the minimum priniple(1.3) 8>>>><>>>>: ddtx(t) = Hp(x(t); u(t); p(t)); x(0) = x0;ddtp(t) = �Hx(x(t); u(t); p(t)); p(T1) = 0;u(t) = argminu2U H(x(t); u; p(t);where H is the Hamiltonian de�ned by H(x; u; p) = f 0(x; u) + (p; f(x; u))X .The oupled system of two-point boundary value problems with initial ondi-tion for the primal equation and terminal ondition for the adjoint equationrepresents a signi�ant hallenge for numerial omputations in ase T1 islarge and it has therefore been the fous of many researh e�orts. An al-ternative is to onstrut the feedbak solution based on Bellman's dynamiprogramming priniple but again, due to omputational osts, this is nottratable exept for very limited examples.In view of the diÆulties explained above the question of obtaining sub-optimal ontrols arises. One of the possibilities is the time-domain deompo-sition by reeding horizon formulations [ABQRW℄. Reeding horizon teh-niques have proved to be e�etive numerially both for optimal ontrol prob-lems governed by ordinary (e.g. [CA, JYH, K, MM, PND, SMR℄) and for1



partial di�erential equations, e.g. in the form of the instantaneous ontroltehnique for problems in uid mehanis [B, CHK, CTMC, HV℄.To briey explain the strategy let 0 = T0 < T1::: < Tn = T1 desribe agrid on [0; T1℄ and let T � maxfTi+1 � Ti : i = 0; :::; n � 1g. The reedinghorizon optimal ontrol problem involves the suessive �nite horizon optimalontrol on [Ti; Ti + T ℄:(1.4) minZ Ti+TTi f 0(x(t); u(t)) dt+G(x(Ti + T ));subjet to(1.5) ddtx(t) = f(x(t); u(t)); t � Ti; x(Ti) = �x(Ti);where �x is the solution to the auxiliary problem on [Ti�1; Ti�1 + T ℄. IfT > Ti+1 � Ti we have overlapping domains. The solution on [0; T1℄ isobtained by onatenation of the solutions on [Ti; Ti+1℄ for i = 0; :::; n� 1: Ifx(Ti) is observed, then the reeding horizon ontrol is a state feedbak sinethe ontrol on [Ti; Ti+1℄ is determined as a funtion of the state �x(Ti). Theoptimal pair (x(t � Ti); u(t � Ti)); t 2 [Ti; Ti + T ℄ satis�es the two pointboundary value problem (1.3) on the interval [0; T ℄ with the terminal ondi-tion p(T ) = Gx(x(T )) and the initial ondition x(0) = �x. System (1.3) withT1 replaed by T , with T suÆiently smaller than T1, is better onditionedand muh easier to solve numerially than (1.3) itself.The theoretial justi�ation of reeding horizon ontrol tehniques an beaddressed by means of the stabilization problem. Assuming that x = 0 isa steady state for (1.2) with u = 0 whih an be stabilized by means of anoptimal ontrol formulation (1.1) with T1 = 1. The question is addressedwhether stabilization an also be ahieved by means of a reeding horizonsynthesis. In order to establish asymptoti stability of the reeding horizonontrol we utilize a terminal penalty term G(x(Ti+T )) rather than terminalonstraints requiring that x(ti + T ) is ontained in an appropriate neighbor-hood of the origin whih is frequently used for reeding horizon ontrol inonnetion with ordinary di�erential equations, see e.g. [NP℄. The funtionalG : X ! R will be hosen as an appropriately de�ned ontrol Liapunov fun-tion, see De�nition 2.1 below. It will be shown that the inorporation of theterminal ost G to the ost funtional provides asymptoti stability and thata suboptimal synthesis for minimizing (1.1) by reeding horizon ontrol.2



Control Liapunov funtions reeived a onsiderable amount of attention asa means of analyzing the stability of the ontrol system (1.1){(1.2), regardlessof issues related to optimal ontrol. We refer to the monograph [FK℄ andthe referenes given there. The use of ontrol Liapunov funtions within theontext of reeding horizon ontrol is a reent one. In [PND℄ ontrol Liapunovfuntions were utilized as expliit onstraints in the auxiliary problems toguarantee that the �nal state x(Ti + T ) lies within the level urve of theontrol Liapunov funtion that is determined by the trajetory ontrolled bya minimum norm ontrol. The analysis in [JYH℄ utilizes ontrol Liapunovfuntions as a terminal penalty as in (1.4). The stabilizing properties of theresulting reeding horizon optimal ontrol strategy are analyzed under theassumption that f possesses an exponentially stabilizable ritial point.Let us now outline the ontributions of this paper. In Setion 2 we intro-due and disuss a ontrol Liapunov funtion G (see De�nition 2.1 and The-orem 2.1), and then we establish monotoniity of the value funtion VT (x0):VT (x0) = inf �Z T0 f 0(x(t); u(t)) dt+G(x(T )) subjet to (1:2)�with respet to T , i.e., VT (x0) � VT̂ (x0) � G(x0) for 0 � T̂ � T andx0 2 X, provided that G is a ontrol Liapunov funtion. This will imply(see, Theorems 2.2{2.4) thatG(xi+1)) + Z Ti+1Ti f 0(�x(t); �u(t)) dt � G(xi)where xi = �x(Ti). This implies that the states xi are on�ned to the levelset S� = fx 2 X : G(x) � G(x0) = �g. Assume that f(0; 0) = 0 andG(0) = 0 and that f 0(x; u) > 0 and G(x) > 0 exept at (0; 0). Then, wehave G(xi+1) < VT (xi) � G(xi). If we assume orbit ompatness then for0 6= x0 2 S� we have G(xi+1) � �G(xi) for some � < 1. Hene G(xk) ��kG(x0) ! 0 as k ! 1, whih implies asymptoti stability. Moreover, iff 0(x; u) � !G(x) for some ! > 0, then G(xi+1) � e�!TG(xi) (see, Theorem2.4). In Setions 3 and 4 we formulate the ontrol problem (1.1)-(1.2) ina Gelfand triple formulation and as semi-linear ontrol systems respetively.We apply our formulations to onrete examples inluding the inompressibleNavier-Stokes equations and a semi-linear damped wave equation. We alsoinvestigate the important speial situation when the quadrati funtionalG(x) = �2 jxj2, � > 0, an be hosen as a ontrol Liapunov funtion. This is3



the ase if the ontrol system (1.2) is losed loop dissipative, see De�nition3.1, whih is useful for ertain lasses of dissipative equations.In general this standard quadrati form is not a ontrol Liapunov funtion.In Setion 4 we analyze a quadrati form motivated from energy multipliersfor the semi-linear wave equations and show that it de�nes a ontrol Liapunovfuntion. Under the assumption that the linear part of (1.2) is stabilizableby linear feedbak, we give in Setion 5 the onstrution of a quadrati formbased on the Liapunov equation and show that it de�nes a loal ontrol-Liapunov funtion. We also provide an analysis for the hoie of the terminalost based on �nite dimensional approximations to the in�nite dimensionalontrol Liapunov funtion.In our disussion above it is assumed that the in�nite time horizon optimalontrol problem admits a solution, whih holds true, for example, in the aseof stabilizable steady states. In general this assumption may not satis�ed.Consider, for instane disturbane attenuation problems and problems withost funtionals of traking type. As in the ase of �nite dimensional ontrolproblems [IK℄ the results in this paper an be extended to suh ases byintroduing a ontrol �-Liapunov funtion, where the positive onstant �represents the attenuation or traking rate.The reeding horizon formulation requires knowledge of the state x(Ti)to employ it in feedbak form. In the ase of partial observations one anonstrut a state observer system to estimate x(Ti) based on the linearizationof the state dynamis about the optimal pair. This will be disussed inforthoming work. Finally we mainly treated bounded distributed aÆneontrols. We aim for extending our analysis to boundary ontrol and bilinearontrol problems.2 Loal ontrol Liapunov funtionsLet X and W be Hilbert spaes representing the state and the ontrol spaefor the autonomous ontrol system(2.1) 8<: ddtx(t) = f(x(t); u(t)); t > 0x(0) = x0;
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with f(0; 0) = 0. Further let U be a losed onvex subset of W and, forT > 0, setUad = fu 2 L2lo(0;1;W ) : u(t) 2 U for a.e. t 2 (0;1)g:For T 2 (0;1℄ and u 2 Uad we refer to x = x(�; x0; u) as solution to (2.1) on[0; T ) if(2.2) 8>>>><>>>>: x(0; x0; u) = x0;x(t+ s; x0; u) = x(t; x(s; x0; u); u(�+ s));for all 0 � s; 0 � t; 0 � t+ s � T:Contents permitting the dependene of x on x0 and u will be suppressed.Throughout we assume that for every x0 2 X and T > 0 there exists aontrol u 2 L2(0; T ;U) suh that (2.1) admits a solution x = x(�; x0; 0) on[0; T ℄. When referring to the reeding horizon strategy we shall for the sakeof simpliity assume that the grid is uniform and that tk = k T for k = 0; :::. The optimal ontrol problems are de�ned next. Letf 0 : X � U ! R+;R+ = fr � 0g, denote a ontinuous funtion and onsider the in�nite horizonproblem(2.3) infu2Uad Z 10 f 0(x(t); u(t))dt subjet to (2.1):If f 0 is quadrati and positive de�nite in x and u then (2.3) represents astabilization problem for (2.1). As desribed in the introdution the reedinghorizon strategy onsists of a sequene of subproblems with ontrol horizonof length T . The building bloks of the strategy are given by the problems(2.4) 8>><>>: infu2Uad Z T0 f 0(x(t); u(t))dt + G(x(T ))subjet to (2.1):Here G : X ! R+ is hosen as loal ontrol Liapunov funtion whih isde�ned next. 5



De�nition 2.1 A nonnegative ontinuous funtional G : X ! R with G(0) =0 is alled loal ontrol Liapunov funtional (CLF) for (2.3) if there exists� > 0 suh that for all x0 2 S� = fx 2 X : G(x) � �g and T > 0 there existsa ontrol u = u(�; x0; T ) 2 Uad suh that(2.5) Z Ts f 0(x(t); u(t))dt + G(x(T )) � G(x(s)); for 0 � s � T;where x is a solution to (2.1). G is alled global CLF if (2.5) holds for allx0 2 X.To investigate the reeding horizon strategy we introdue the value fun-tionals for the in�nite and the �nite horizon problems (2.3) and (2.4):VT (x0) = infu2Uad Z T0 f 0(x(t); u(t)) dt + G(x(T ));subjet to (2.1) and V (x0) = infu2Uad Z 10 f 0(x(t); u(t) dt;subjet to (2.1).Theorem 2.1 Suppose that G is a loal CLF for (2.3), and T > 0, x0 2 S�.Then we have VT (x0) � G(x0) and V (x0) � G(x0). If in addition G is aglobal CLF then V (x0) � VT (x0) for all x0 2 X.Proof. The �rst inequality is a onsequene of the de�nition of loal CLF.We also have G(x(T )) � G(x0) and hene x(T ) 2 S�. Therefore onate-nation of the solutions arising from repeated appliations of (2.6) on theintervals [(k � 1)T; k T ℄ allows to onstrut a ontrol u 2 Uad with assoi-ated solution x = x(�; u) suh that for eah k � 1G(x(k T )) + Z k T(k�1)T f 0(x(t); u(t))dt � G(x((k � 1)T )):Summation over k implies thatG(x(k T )) + Z k T0 f 0(x(t); u(t))dt � G(x0):6



By the Lebesgue{Fatou lemma and non-negativity of f 0 we haveZ 10 f 0(x(t); u(t))dt � G(x0);and hene V (x0) � G(x0). Utilizing the properties for x to be a solution of(2.1) as spei�ed in (2.2) allows to employ the optimality priniple(2.6) V (x0) = infu2Uad �Z T0 f 0(x(t); u(t))dt + V (x(T ))� ;where x = x(�; x0; u), e.g., see [FS℄. If G is a global CLF then by theargument above V (x(T )) � G(x(T )). Combined with (2.6) this impliesV (x0) � VT (x0). �Theorem 2.2 (Monotoniity) Let G be a loal CLF and 0 � T̂ � T . Thenwe have VT (x0) � VT̂ (x0) for all x0 2 S�:Proof: Let Æ > 0 be arbitrary. Then there exists (�x; �u) with �u 2 L2(0; T̂ ;U)and �x a solution to (2.1) on [0; T̂ ℄ suh that(2.7) Z T̂0 f 0(�x(t); �u(t))dt + G(�x(T̂ )) � VT̂ (x0) + Æ:We need to argue that �u an be hosen suh that G(�x(T̂ )) � �. For thispurpose note that VT̂ (x0) � G(x0) by Theorem 2.1. If VT̂ (x0) = G(x0) thenby the de�nition of CLF �u an be hosen suh that G(�x(T̂ )) � G(x0) =VT̂ (x0) � �. Otherwise G(x0) > VT̂ (x0) and hoosing Æ � G(x0) � VT̂ (x0),there exists again �u suh that (2.7) holds and G(�x(T̂ )) � G(x0) � �. By(2.5) there is a ontrol ~u = u(�; �x(T̂ ); T � T̂ ) suh thatZ T�T̂0 f 0(~x(t); ~u(t))dt + G(~x(T � T̂ )) � G(~x(0));where ~x = ~x(�; �x(T̂ ); ~u). Conatenation of the solution and ontrol pairs(�x; �u) and (~x; ~u) de�nes a ontrol u with assoiated solution x on [0; T ℄ sat-isfyingVT (x0) � Z T0 f 0(x(t); u(t))dt + G(x(T )) � Z T̂0 f 0(x(t); u(t))dt + G(x(T̂ )):7



Combined with (2.7) this implies that VT (x0) � VT̂ (x0) + Æ. Sine Æ > 0 washosen arbitrarily we have VT (x0) � VT̂ (x0) for 0 � T̂ � T . �Theorem 2.3 Assume that G is a loal CLF and that (�x; �u) is a solutionto the reeding horizon problems (1:4) � (1:5) on [0;1). Then we have forevery x0 2 S� and k = 1; 2; � � �(2.8) G(xk) + Z k T0 f 0(�x(t); �u(t))dt � G(x0):If VT (x) � �TG(x) for some �T � 1 and T > 0, independently of x 2 S�,then G(xk) � �kTG(x0) for all k = 1; 2; � � � . If G is a global CLF thenVT (�x(t)) � VT (xk�1) for all t 2 [Tk�1; Tk℄.Proof. Inequality (2.7) follows from repeated appliation of (2.5). Notethat by onstrution xk 2 S� for all k. If VT (x) � �T G(x) for some �T � 1,T > 0, independently of x 2 S� then G(xk) � VT (xk) � �T G(xk�1) sinef 0 � 0 and by iteration G(xk) � �kT G(x0) for eah k = 1; 2; � � � . Utilizingthe properties in (2.2) satis�ed by a solution to (2.1) allows to apply theoptimality priniple whih impliesVT (xk�1) = Z t(k�1)T f 0(�x(t); �u(t))dt + VkT�t(�x(t)); for t 2 [(k � 1)T; k T ℄:If G is a global CLF then T ! VT (�x(t)) deays monotonially by Theorem2.2 and onsequently VT (�x(t)) � VT (xk�1) � G(xk�1) for t 2 [(k � 1)T; k T ℄.� In Setion 4 we shall onsider a lass of problems where �T of Theorem2.3 an be taken stritly small than 1. Next we give a ondition for � < 1whih is appliable in ase that the ontrolled orbits are ompat.Let us de�ne for � > 0S =�(x; u) 2 X � L2(0; T ;U) : x = x(T ; x0; u); x0 2 S� ;G(x(T ; x0; u)) + Z T0 f 0(x; u)dt � G(x0)� ;and set BÆ = fx : jxj � Æg, for Æ > 0. 8



Proposition 2.1 Let G be a loal CLF and assume that S is ompat inX � L2(0; T ;U)weak, f 0(x; u) > 0 for x 6= 0, G(x) > 0 for x 6= 0, and that(x0; u)! x(T ; x0; u) is ontinuous from S � X �L2(0; T ;U)weak to X. Thenfor every Æ > 0 there exists � = �(T; Æ) < 1 suh that(2.9) G(x(T ; �x; u)) � � G(�x);for all (�x; u) 2 S with �x =2 BÆ.Proof: Let �x 2 S, �x 6= 0, and let �u denote a ontrol suh that (2.5) is satis�edfor the assoiated trajetory. There exists a nontrivial time interval on whihthe trajetory x(�; �x; u) does not vanish and onsequently G(x(T ; �x; u)) <G(�x). If the assertion of the theorem is false then there exists a sequenef(�xn; un)g 2 S with �xn =2 BÆ suh thatG(x(T ; �xn; un)) � (1� 1n) G(�xn):By ompatness there exist subsequenes of f�xng and f�ung, denoted by thesame symbol, and (x̂; û) 2 S with x̂ =2 BÆ, suh that lim �xn = x̂ in Xand lim �un = û weakly in L2(0; T ;U). As a onsequene of the ontinuityassumption limn!1x(T ; �xn; �un) = x̂ and hene G(x(T ; x̂; û)) � G(x̂), whihis impossible. �Proposition 2.1 asserts that orbits originating in S� and ontrolled by thereeding horizon strategy deay into arbitrary small neighborhoods of theorigin with a uniform deay rate.Theorem 2.4 (Stability) Assume that G is a global CLF and that f 0(x; u) �!G(x) for some ! > 0 and all x 2 X and u 2 U , and that (u(t); x(t))minimizes R T0 f 0(x(t); u(t)) dt+G(x(T )) over u 2 Uad subjet to (2.1). Thenwe have G(x(T )) � e�!TG(x0):Proof: By the optimality priniple(2.10) Z �t f 0(x(s); u(s)) ds+ VT�� (x(�)) = VT�t(x(t))for every 0 � t � � � T . From (2.10) it follows that t! g(t) = VT�t(x(t)) isa W 1;1{funtion. By Theorem 2.1 and the lower bound on f 0 it follows that! Z �t VT�s(x(s)) ds+ VT�� (x(�)) � VT�t(x(t))9



and onsequently !g(t) + ddt g(t) � 0 for a.e. t 2 [0; T ℄:Multiplying by e!t and integrating on [0; T ℄ implies thate!Tg(T )� g(0) � 0: �3 Gelfand triple formulationLet V � X = X� � V � be a Gelfand triple, W = U , and let f : V �U ! V � be a ontinuous mapping. We assume that for every x0 2 X andu 2 L2lo(0;1;U) there exists � > 0 (depending on jx0jX and R �0 juj2 ds) suhthat there exists a unique solution x = x(�; x0; u) 2 W (0; �) = L2(0; � ;V ) \H1(0; � ;V �) satisfying(3:1) x(t)� x0 = Z t0 f(x(s); u(s)) ds in V �and jx(t)� x0jX ! 0 as t! 0+. Moreover we assume that jx(t)� x0jV ! 0as t ! 0+ if x0 2 V . Note that W (0; T ) is ontinuously embedded intoC(0; T ;X) (i.e., jx(t)j2H � R t0 (jx(s)j2V + j ddtx(s)j2V �) dt ).We shall say that the solutions to (3.1) depend ontinuously on x0 2 Xand u 2 L2(0; � ;U) if for every C > 0 there exists � > 0 and a ontinuous,nondereasing funtion MC(t) with MC(0) = 1 suh thatjx(�; x0; u)� x(�; y0; v)j2W (0;t) � MC(t) (jx0 � y0j2X + Z t0 ju(s)� v(s)j2):for all t � � , x0; y0 2 X and u; v 2 L2(0; � ;U) satisfyingjx0j; jy0j � C and Z �0 juj2 ds; Z �0 jvj2 ds � C2:We have the following relationship between ontrol Liapunov funtionsand the Hamilton-Jaobi inequality (3.2) given below.
10



Theorem 3.1 Assume that G is a onvex C1-funtional on X, with G(0) =0, and that x 2 V ! G0(x) 2 V is ontinuous.(a) (Neessity) Assume that for every x 2 V(i) u! f(x; u) is ontinuous from U endowed with the weak topology to V �and u! f 0(x; u) is weakly lower semi-ontinuous,(ii) U is weakly ompat or u! f 0(x; u) is oerive.Then, if G is a global ontrol Liapunov funtion, there exists for all x0 2 Van element u 2 U suh that(3:2) hG0(x0); f(x0; u)iV;V � + f 0(x0; u) � 0:(b) (SuÆieny) Assume that the solutions to (3.1) depend ontinuously onx0 2 X and u 2 L2(0; � ;U) and that f with f(0; 0) = 0 is ontinuous in thesense that(3:3) f(xn; un)! f(x; u) weakly in L2(0; � ;V �)if xn ! x in W (0; �) and un ! u in L2(0; � ;U). Suppose that the level-sets S� are bounded subsets of X and that there exists a loally Lipshitzeanfuntion � : X ! U , with �(0) = 0 and suh that for all x 2 V andu = ��(x)(3:4) hG0(x); f(x; u)iV;V � + f 0(x; u) � 0:Then G is a global ontrol Liapunov funtion.Proof: (a) Suppose ondition (3.2) does not hold. Then there exits anx0 2 V suh that hG0(x0); f(x0; u)iV;V � + f 0(x0; u) > 0for all u 2 U . Due to assumptions (i) and (ii) the minimal value of the thefuntional u! hG0(x0); f(x0; u)iV;V � + f 0(x0; u) is attained on U and henethere exists � > 0 suh that(3:5) hG0(x0); f(x0; u) + f 0(x0; u) � � > 0 for all u 2 U:By onvexity of G and (2.5)hG0(x(t)); x(t)� x(t� h)h iV;V � � G(x(t))�G(x(t� h))h � �1h Z tt�h f 0(x; u) ds:11



Sine 1h R tt�h f(x(s); u(s)) ds! f(x(t); u(t)) in V �1h R tt�h f 0(x(s); u(s)) ds! f 0(x(t); u(t))a.e. t 2 [0; � ℄ as t! 0+. Thus, we havehG0(x(t)); f(x(t); u(t))iV;V � + f 0(x(t); u(t)) � 0for a.e. t 2 [0; � ℄. Sine x(t)! x0 in V , this ontradits (3.5).(b) (SuÆieny) Let � > 0 be arbitrary. By assumption S� is bounded.Hene there exists Æ > 0 suh that S� � BÆ = fx : jxjX � Æg.First we prove that the assumptions on � guarantee the existene of a uniqueloally de�ned solution x 2 W (0; �) to(3:6) x(t) = x0 + Z t0 f(x(s);��(x(s)) ds;for every x0 2 BÆ. Uniqueness is a onsequene of the loal Lipshitz propertyof �. To verify existene let x0 2 V \BÆ and set C = 2Æ. De�ne a sequenexk in W (0; �) by xk+1(t) = x(t; x0;��(xk)):From the following arguments it follows that xk is well-de�ned for � suÆ-iently small. In fat let � be suh that (3.1) admits a unique solution ifjx0jX � C and R �0 juj2 ds � C. Let � be further hosen suh thatqMC(�)(14 + j�j2 �) � 1 and max(j�j2�;p(MC(�) �) j�j) < 1;where j�j denotes the Lipshitz onstant of � on the ball in X with enter 0and radius C. If jxk(t)jX � 2jx0jX = C on [0; � ℄, then uk = ��(xk) satis�esZ �0 jukj2 ds � C2j�j2�and thus by the loal ontinuous dependene assumptionjxk+1(t)jX �qMC(t) (jx0j2X + C2j�j2 t) � Con [0; � ℄ sine qMC(�)(14 + j�j2 �) � 1. If we let x0(t) = x0 on [0; � ℄ thenxk 2 � = fx 2 C(0; � ;X) : jx(t)jX � C on [0; � ℄g for all k. For the iterateswe �nd jjxk+1 � xkjj �pMC(�)� j�j jjxk � xk�1jj;12



where jj � jj denotes the norm in C(0; � ;X). Thus fxkg is a Cauhy sequenein C(0; � ;X) sine pM(�)� j�j < 1. Note thatjxk+1 � xkjW (0;�) �pMC(�)� j�j jjxk+1 � xkjj:Thus, there exists x 2 W (0; �) \ � suh that xk onverges to x strongly inW (0; �) and thus uk ! u = ��(x) as k !1. The ontinuity ondition forf implies that x 2 W (0; �) is a solution to (3.6).Let E be a dense subset of Lebesgue points in (0; T ) suh that for t 2 E(3:7) limh!0 1h Z t+ht f(x(s);��(x(s)))ds = f(x(t);��(x(t))) in V �:Sine x0 2 V we have from the general assumptions of this setion thatx 2 C(0; � ;V ). By onvexity of G we obtainG(x(t + h))�G(x(t)) � hG0(x(t+ h)); x(t + h)� x(t)iV;V �:By (3.7) and ontinuity of x! G0(x) from V to V we haveddt G(x(t)) � hG0(x(t)); f(x(t);��(x(t)))iV;V �; for t 2 E:Utilizing (3.4) implies thatddt G(x(t)) � �f Æ(x(t);��(x(t))); for t 2 E:It follows that(3:8) G(x(�)) + Z �S f Æ(x(t);��(x(t)))dt � G(x(s));for 0 � s � � and x0 2 V \ BÆ. A density argument together with theontinuous dependene assumption imply that (3.8) holds for all x0 2 BÆ. Inpartiular (3.8) holds for x0 2 S� and hene a unique global solution to (3.6)exists for every x0 2 S� and (2.5) holds for every T > 0. �3.1 Quadrati Terminal PenaltyIn this setion we disuss the ase when G(x) = �2 jxj2X ; � > 0, an be usedas global CLF. 13



De�nition 3.1 The ontrol system (1.1){(3.1) is losed-loop dissipative ifthere exists a loally Lipshitzian feedbak law u = �K(x) 2 U suh thath�x; f(x;�K(x))iV;V � + f 0(x;�K(x)) � 0for some � > 0 and all x 2 V .If (1.1){(3.1) is losed-loop dissipative, then �2 jxj2 an serve as a ontrolLiapunov funtion for (2.1){(2.2) by (3.2) of Theorem 3.1. In general this isnot neessarily the ase. But we have the following result.Theorem 3.2 Let G(x) = �2 jxj2 and let V (x) and VT (x) be the in�nite andthe �nite horizon value funtionals, respetively. We assume that for everyx 2 X there exists an admissible ontrol u�(t) = u�(t; x) suh thatV (x�(T )) + Z T0 f 0(x�(t); u�(t)) dt = V (x)for all T � 0 and that the orresponding trajetory x�(t) satis�es jx�(t)j �M e�!tjxj, for M � 0, ! > 0 and all t � 0. Then,VT (x) � V (x) + M2�2 e�2!T jxj2:Moreover, if V (x) � �2 jxj2, thenVT (x) � (�2 + M2�2 e�2!T )jxj2 � (�� +M2e�2!T )G(x):Proof: Note thatVT (x) � Z T0 f 0(x�(t); u�(t)) dt+V (x�(T ))+G(x�(T ))�V (x�(T )) � V (x)+G(x�(T ));whih implies the �rst assertion. The seond assertion simply follows fromthe �rst one. �Theorem 3.2 implies that for suÆiently large � > 0 there exists �T > 0suh that for T � �T we have G(x(T )) � VT (x) � �T G(x) with �T < 1 andthus in the notation of Theorem 2.3 we have G(xk) � �kTG(x0), for k 2 N .14



3.2 Navier Stokes equationsWe onsider the inompressible Navier-Stokes equations in 
: the veloity�eld v = v(x; t) 2 Rd and the pressure p = p(x; t) 2 R satisfy(3:9) vt+v �rv+grad p = ��v+Bu(t) and div v = 0; x 2 
; t > 0;with boundary ondition v = 0 on � and initial ondition v(x; 0) = v0(x).Here 
 is a bounded open domain Rd; d = 2; 3 with suÆiently smoothboundary �, � > 0 is the kineti visosity and Bu(�) represents the ontrolbody fore. We use the following standard funtion spaes (e.g., see [Te℄). LetV be the divergene-free subspae of H10 (
)d de�ned by V = f� 2 H10 (
)d :div � = 0g and let X be the ompletion of V with respet to L2(
)d-norm,i.e. X = f� 2 L2(
)d : div � = 0; and n � � = 0 on �g:X is a losed subspae of L2(
)d when equipped by j�jX = j�jL2 as norm.Let P be the orthogonal projetion of L2(
)d on X. The norm in V is givenby j�jV = jr�jL2. We de�ne the Stokes operator A0 2 L(V; V �) by(3:10) hA0�;  iV ��V = �(�;  ) = (r�;r )L2(
);for �;  2 V . The operator A0 has a losed self-adjoint restrition (A0 =�P�) on X with dom (A0) = H2(
)d \ V . Also, de�ne the trilinear form bon V � V � V by b(u; v; w) = Z
 ui(Dxi vj)wj dx;and assume that B 2 L(U;X): Then (3.9) an be expressed as (3.1) withhf(x; u);  iV �;V = hA0x+ Bu;  iV �;V + b(x; x;  );for x;  2 V and u 2 U . The trilinear form b satis�esb(v; �;  ) + b(v;  ; �) = 0and in the two dimensional ase there exist onstants M1;M2 suh thatjb(v; �;  )j �M1 jvj1=2H jvj1=2V j�jV j j1=2H j j1=2Vjb(v; �;  )j �M2 jvj1=2H jvj1=2V j�j1=2V j�j1=2dom (A0)j jH15



for all v; �;  2 V , respetively � 2 dom(A0).Let us onsider the feedbak operator � = �B�, with � > 0. Clearly �satis�es the assumptions of Theorem 3.1 (b). With this preparation we havethe following:Proposition 3.1 Assume that d = 2 and T > 0 is arbitrary. For everyx0 2 X and u 2 L2(0; T ;U) there exists a unique solution x 2 W (0; T )to (3.9), and the ontinuity property (3:3) holds. If x0 2 V , then x 2C(0; T ;V ) \ L2(0; T ; dom (A0)). Moreover G(x) = �2 jxj2X , with � > 0 is aontrol Liapunov funtion for the ost-funtional f 0(x; u) = �2 (jxj2 + juj2),provided � is suÆiently small.The �rst part follows from standard results on Navier-Stokes equationsand the seond one is a onsequene of Theorem 3.1 (b) observing that foru = �� B�; � > 0hx; f(x; u)iV;V � = �hA0x; xi � � jB�xj2;is negative de�nite by (3.10).4 Semi-linear ontrol systemsConsider the ontrol system of the form(4:1) ddtx(t) = Ax(t) + F (x(t)) +Bu(t); x(0) = x0 2 X;where A is the in�nitesimal generator of a ontration semigroup fS(t) :t � 0 on X, B 2 L(U;X) and u 2 L2lo(0;1;U). The nonlinear funtionF : X ! X is loally Lipshitz in the sense that for eah C 2 R there existsa onstant kC suh thatjF (x)jX � kC and jF (x)� F (y)jX � kC jx� yjX;for all x; y 2 X satisfying jxj; jyj � C. It an be proved (e.g., see [Ta℄) thatfor every x0 2 X and u 2 L2lo(0;1;U) there exists a unique loally de�nedmild solution x in C(0; � ;X) to (4.1), i.e., there exists � > 0 (depending onjx0j and R �0 juj2 dt) suh thatx(t) = S(t)x0 + Z t0 S(t� s)(F (x(s)) +Bu(s)) ds; for t 2 [0; � ℄:16



Let Jn = (I � 1nA)�1 denote the resolvent of A. Then we have the followingresult:Theorem 4.1 Assume that G(x) is a C1-funtional on X satisfying(4:2) (G0(x); Ax+ F (x))X � !G(x) + (x); for all x 2 dom (A);for ! 2 R and a ontinuous funtion  : X ! R. Then the loally de�nedsolution x(�) to (4.1) satis�esG(x(t)) � e! tG(x0) + Z t0 e!(t�s) ((x(s)) + (G0(x(s)); B u(s))) ds;for t 2 [0; � ℄.Proof: Let xn(t) = Jnx(t). Then xn 2 H1(0; � ;X) \ C(0; � ; dom (A)) andddtxn(t) = Axn(t) + Jn(F (x(t)) +Bu(t)) a.e. in (0; �):Thus ddtG(xn(t)) = (G0(xn(t)); Axn(t) + F (xn(t)) +Bu(t)) + rn(t);where rn(t) = (G0(xn(t)); JnF (x(t))� F (xn(t)) + JnBu(t)� Bu(t)):By assumptionddt G(xn(t)) � !G(xn(t)) + (xn(t)) + (G0(xn(t)); B u(t)) + rn(t);and using Gronwall's inequality(4:3)G(xn(t)) � e! tG(x0) + Z t0 e!(t�s) ((xn(s)) + (G0(xn(s)); B u(s)) + rn(s)) ds:Sine xn ! x(t) in C(0; � ;X) and Jn ! I as n!1 we haveZ t0 e!(t�s)rn(s) ds! 0 as n!1;17



and laim follows by taking the limit in (4.3). �Theorem 4.2 (SuÆieny) Suppose that G is a C1{funtional on X andthat �: X ! U is loally Lipshitz suh that(4:4) (G0(x); Ax + F (x)� B�(x))X � !G(x)� f 0(x;�(x)) + ;for all x 2 dom (A), where ! 2 R,  is a nonnegative onstant and f 0 : X �U ! R+ is ontinuous. If G(x) � r(jxjX) for a ontinuous unboundedfuntion r : R+ ! R+, then the losed loop systemddtx(t) = Ax(t) + F (x(t))�B�(x(t)); x(0) = x0has a unique globally de�ned mild solution. Moreover, if ! � 0 and  = 0,then G is a global ontrol Liapunov funtion for the ontrol system (2.3),(4.1).Proof: From Theorem 4.1 it follows that(4:5) G(x(t)) � e! tG(x(0)) + Z t0 e!(t�s)(�f 0(x(s);�(x(s))) + ) ds;for t 2 [0; � ℄. In partiular this implies thatG(x(t)) � e!tG(x(0)) +  e!t � 1! ;for t 2 [0; � ℄. Hene global existene follows from G(x) � r(jxjX) and theontinuation method. For ! � 0 and  = 0 the funtional G is a CLF by(4.1). �4.1 Semi-linear Wave EquationIn this subsetion we demonstrate the appliability of the above results tothe semi-linear wave equation;(4:6) ytt +	(yt)� yxx + y3 = u(x; t)�I(x); x 2 (0; 1);with boundary onditions:y(t; 0) = 0; yx(t; 1) = 0;18



where  : R ! R is a Lipshitz ontinuous funtion satisfying  (s)s � 0for s 2 R and I � (0; 1). To express (4.6) in the abstrat form (4.1) weintrodue z(t) = (y(t; �); yt(t; �)) 2 X with X = H1L(0; 1)� L2(0; 1) whereH1L(0; 1) = f� 2 H1(0; 1) with �(0) = 0g;equipped with j�j2 = Z 10 j�xj2 dx. De�ne the linear operator AA(�;  ) = ( ; �xx)withdom (A) = f(�;  ) 2 X :  2 H1L(0; 1) and � 2 H2(0; 1); �x(1) = 0g;and the nonlinear operatorF (�) = (0;��3 � 	( )):Let B be the linear operator on U = L2(0; 1) de�ned byBu = (0; �I(x)u):Then (4.6) an be written as (4.1).Let u = 0 and de�neG(z) = G(�;  ) = 12 Z 10 (j j2 + j�xj2) dx+ 14 Z 10 j�j4 dxThen (G0(z); Az + F (z)) = � Z 10 	( ) dx � 0;for all z 2 dom(A) and hene (4.2) is satis�ed with ! =  = 0 .Next we onsider the linear wave equation(4:7) ytt = yxx + u(x; t)�I(x); x 2 (0; 1)with boundary onditions:y(t; 0) = 0; yx(t; 1) = 0;19



and aim for establishing (4.4) with(4:8) f 0(x; u) = 2(jxj2X + juj2L2(I));for some  > 0. Let(4:9) G(�;  ) = Z 10 12(j j2 + j�xj2) dx+ Z 10 a(x)�x dx+ b Z 10 � dxand u = ��yt �I = �� �I where b and � are positive onstants. ForI = (x1; x2) � (0; 1) we de�ne the pieewise linear funtion a on (0; 1) by
a(x) = �8>>>>><>>>>>:

x on [0; x1℄x2 � x1 � 1x2 � x1 (x� x1) + x1 on (x1; x2℄x� 1 on (x2; 1℄;with � > 0. Then for z = (�;  ) 2 dom(A) we have(4:10)J = (G0(z); Az � �(0;  �I)) = �� ZI j j2 + Z 10 a(x)(  x + �x(�xx � � �I )) dx+b Z 10 (j j2 + �(�xx � � �I )) dx = J1 + J2 + J3:Here J2 � � Z 10 12 a0 (j j2 + j�xj2) dx+ �� j j2j�xj2and J3 � b Z 10 (j j2 � j�xj2) dx+ b� j j2j�xj2:Note that a0 = � (1 � 1x2 � x1 ) < 0 on I and on a0 = � > 0 on I. Assumethat x2 � x1 > 12 and let b = �4(x2 � x1). For  = (12 � 14(x2 � x1))� > 0,we have b + a02 =  on I and 12 a0 � b =  on I. Thus, if � = b + � a0jI2 =20



�2(x2 � x1) = 2b, thenJ � � Z 10 (j j2 + j�xj2) + �� j j2j�xj2 + b� j j2j�xj2:Hene we an selet 0 < � < 1 suh that(4:11) J � � 2 Z 10 (j j2 + j�xj2) dx:Further � > 0 an be hosen suh thatk1(j�xj2 + j j2) � G(�;  ) � k2(j�xj2 + j j2);for positive onstants k1; k2 independent of (�;  ) 2 X. From these estimatesTheorem 4.2 is appliable and we have:Proposition 4.1If �; �; b;  are suÆiently small positive onstants and 12 < x2� x1, thenG de�ned in (4.9) is a ontrol Liapunov funtion for the linear system (4.7)with ost given by (4.8) and feedbak law u = ��yt�I . Moreover (4.4) holdswith ! < 0 and  = 0.We now turn to the nonlinear equation (4.6).Proposition 4.2 Assume 12 < x2 � x1 and j	( )j � d j j with d � 0suÆiently small. Then there exists positive onstants �;  suh that Gde�ned byG(z) = Z 10 12(j j2 + j�xj2) + 14 j�j4 dx+ Z 10 a(x)�x dx + b Z 10 � dxis a ontrol Liapunov funtion for the nonlinear system (4.6) with ost givenby (4.8) and feedbak law u = ��yt�I .Proof: We show that (4.4) holds with ! = 0 and  = 0. If J is de�ned as in(4.10), then(4:12) (G0(z); Ax + F (z)� � (0;  �I))X =� J + Z 10 a(x)�x(��3 �	( )) dx+ b Z 10 �(��3 � 	( )) dx:21



where J is de�ned as in (4.10). Here� Z 10 (a(x)�x �3 + b �4) dx = Z 10 (14 a0 � b)�4 dx � 0sine a0 � � and b � �4 . Thus, the proposition follows from (4.11){(4.12). �5 Loal ontrol Liapunov funtionIn this setion we desribe a method for onstrution of loal ontrol Lia-punov funtions based on the Liapunov equation. Consider the semi-linearontrol system(5:1) ddtx(t) = Ax(t) + F (x(t)) +Bu(t); x(0) = x0 2 X;with F loally Lipshitz ontinuous. Assume that A � � BB�, � > 0, gen-erates an exponentially stable C0{semigroup S(t) on X. Let Q denote anonnegative, self{adjoint operator on X, and let � be the bounded, nonneg-ative self{adjoint solution to the Liapunov(5:2) 2((A� � BB�)x;�x)X + (Qx; x) = 0 for all x 2 dom (A);that is, �x = R10 S�(t)QS(t)x dt, for x 2 X.We de�ne G(x) = 12 (jxj2 + (�x; x)); for x 2 X;and set u = �� B�x. For this hoie of u there exists a unique loal solutionx(�) of (5.1) on [0; � ℄, � > 0. Assume that there exists a ontinuous funtion : X ! R suh that(5:3) (Ax; x)� � jB�xj2 + (x; F (x))� 12 (Qx; x) + (F (x);�x) � (x);for all x 2 dom (A). ThenG(x(t)) � G(x0) + Z t0 (x(s))ds for s 2 [0; � ℄:Assume further that there exists � > 0 suh that(5:4) (x) + f 0(x;�� B�x) � 0; for all x 2 S�:Then (5.1) with u = �� B�x admits a global solution for x0 2 S� and G isa loal ontrol Liapunov funtion for (1.1) subjet to (5.1).22



5.1 ExampleAs an example onsider the ontrolled reation{di�usion system(5:5) yt(t; x) = Dyxx(t; x) + f(y) + mXi=1 bi(x)ui(t); for t > 0; x 2 (0; 1)with boundary onditions y(t; 0) = y(t; 1) = 0, where y : R+ � [0; 1℄ ! Rd,D is a positive diagonal matrix, f : Rd ! Rd is the reation rate and bi 2L1((0; 1);Rd) is the i�th ontrol distribution funtion.Let X = L2((0; 1);Rd), U = Rm and setAy = Dyxx with dom (A) = fy 2 X : yx; yxx 2 X : y(0) = y(1) = 0g;[F (y)℄(x) = f(y(x));[Bu℄(x) = mXi=1 bi(x)ui; for x 2 (0; 1):If F is loally Lipshitz in the sense of Setion 4, with F (0) = 0, and, forexample, Q = ÆI, with Æ > 0, and f 0 is quadrati, then it is straightforwardto hek ondition (4.5).Alternatively one an utilize the Gelfand triple formulation of (5.3) withV = H10 ((0; 1);Rd). The left hand side of (5.3) beomes�(Dyx; yx)� � jB�yj2 � 12(Qy; y) + (F (y); y + �y);whih suggests to introdue an equivalent norm kyk on V de�ned byjjyjj2 = (Dyx; yx) + � jB�yj2 + 12(Qy; y):Suppose that F satis�esj(F (y); y + �y)X j � kyk2q(jyj); for all y 2 X;for some q : R+ ! R. Then, if there exists � > 0 suh that(q(jyj)� 1) jjyjj2 + f 0(y;�B�y) � 0 for all y 2 S�;(5.4) is satis�ed with (y) = (q(jyj)� 1)kyk2, (5.5) admits a global solutionfor all y(0) 2 S�, and G is a loal ontrol Liapunov funtion.23



5.2 ApproximationLet Xn be �nite dimensional subspaes of X with U1n=1Xn = X, and denoteby Pnthe orthogonal projetions from X onto Xn . Let fAng be a sequeneof approximations of A on Xn satisfying(AnPnx; x)X � 0; for all x 2 X;and j(I � An)�1Pnx� (I � A)�1xjX ! 0; as n!1for all x 2 X. By the Trotter-Kato theoremjeAntPnx� S(t)xjX ! 0; as n!1for all x 2 X, uniformly on bounded t�intervals. Let Bn = PnB and Qn =PnQPn. We further assume that(5:5) je(An�� BnB�n)tPnxj �Me�!t jxjfor onstants M � 1 and ! > 0 independent of x 2 X. Let �n : Xn ! Xnsatisfy the Liapunov equation on Xn(An � � BnB�n)��n + �n(An � � BnB�n) +Qn = 0:That is, �n = Z 10 e(An�� BnB�n)�tQne(An�� BnB�n)t dt:From our assumptions it follows that, �nPnx ! �x as �n ! 1 for allx 2 X. We onstrut a sequene of funtions Gn(x) on X byGn(x) = 12 (jxj2 + (�nPnx; Pnx)):Note that(Ax� � BB�x;�nPnx)= �12 (Qnx; x) + (Ax� AnPnx;�nPnx)� � (BB�x�BnB�nx;�nPnx):Suppose ondition (5.3) holds. Then we haveGn(x(t)) � Gn(x0) + Z t0 ((x(t)) + en(x(t))) dt;24



where en(x) = 12((Q�Qn)x; x) + (Ax� AnPnx;�nPnx)�� (BB�x� BnB�nx;�nPnx)� (F (x);�x� �nPnx):Here, we note that (Ax� AnPnx;�nPnx) = 0;if Xn and X?n are invariant subspaes of A. Hene, if for some �n > 0(5:7) (x) + en(x) + f 0(x;�� B�x) � 0;for all x 2 Sn�n = fx : Gn(x) � �ng then Gn is a loal ontrol Liapunovfuntion for the in�nite dimensional ontrol problem (1.1), (5.1).Remark: Alternatively to the semi-linear formulation used above, the ap-proximation proedure an be ast in the Gelfand triple formulation.Example Consider the ontrol reation-di�usion system as in Setion 5.1.Assume D is nonsingular. Let Xn = span f�igni=1 where �i is the i-th eigenfuntion of A. Then ondition (5.1) holds. Assume that Q is ompat. Thenk�n � �k ! 0 as n!1. Sineen(x) = 12((Q�Qn)x; x)� � (BB� �BnB�nx; x) + (F (x);�x� �nx);thus there exists an �n > 0 suh that (5.7) holds. Moreover, f�ig beingeigenfuntions an be replaed by any omplete basis in (H10 )d sine in generalwe an show (Ax� AnPnx;�nPnx) � �np(Ax; x)jxjwith �n ! 0 as n!1 for x 2 DReferenes[ABQRW℄ F. Allg�ower, T. Badgwell, J. Qin, J. Rawlings and S. Wright:Nonlinear preditive ontrol and moving horizon estimation { an in-trodutory overview, Advanes in Control, P. Frank (Ed.), Springer1999, 391{449. 25
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