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1 Introdu
tionWe 
onsider the following optimal 
ontrol problem in Hilbert spa
es X andW : minimize the performan
e index(1.1) Z T10 f 0(x(t); u(t)) dtsubje
t to(1.2) ddtx(t) = f(x(t); u(t)); for t > 0; x(0) = x0; and u(t) 2 U:Here U is a 
losed 
onvex subset of W . We refer to x(�) and u(�) as stateand 
ontrol fun
tions with x(t) 2 X and u(t) 2 U .For the purpose of this introdu
tory dis
ussion we assume that for everyx0 2 X and u 2 Uad = fu 2 L2̀o
(0;1;W ) : u(t) 2 U a:e:g there existsan X-valued 
ontinuous semi-
ow x(t) = x(t; x0; u) whi
h is a weak solutionto (1.2). Under appropriate 
onditions (1.1){(1.2) admits a solution whi
hsatis�es the minimum prin
iple(1.3) 8>>>><>>>>: ddtx(t) = Hp(x(t); u(t); p(t)); x(0) = x0;ddtp(t) = �Hx(x(t); u(t); p(t)); p(T1) = 0;u(t) = argminu2U H(x(t); u; p(t);where H is the Hamiltonian de�ned by H(x; u; p) = f 0(x; u) + (p; f(x; u))X .The 
oupled system of two-point boundary value problems with initial 
ondi-tion for the primal equation and terminal 
ondition for the adjoint equationrepresents a signi�
ant 
hallenge for numeri
al 
omputations in 
ase T1 islarge and it has therefore been the fo
us of many resear
h e�orts. An al-ternative is to 
onstru
t the feedba
k solution based on Bellman's dynami
programming prin
iple but again, due to 
omputational 
osts, this is nottra
table ex
ept for very limited examples.In view of the diÆ
ulties explained above the question of obtaining sub-optimal 
ontrols arises. One of the possibilities is the time-domain de
ompo-sition by re
eding horizon formulations [ABQRW℄. Re
eding horizon te
h-niques have proved to be e�e
tive numeri
ally both for optimal 
ontrol prob-lems governed by ordinary (e.g. [CA, JYH, K, MM, PND, SMR℄) and for1



partial di�erential equations, e.g. in the form of the instantaneous 
ontrolte
hnique for problems in 
uid me
hani
s [B, CHK, CTMC, HV℄.To brie
y explain the strategy let 0 = T0 < T1::: < Tn = T1 des
ribe agrid on [0; T1℄ and let T � maxfTi+1 � Ti : i = 0; :::; n � 1g. The re
edinghorizon optimal 
ontrol problem involves the su

essive �nite horizon optimal
ontrol on [Ti; Ti + T ℄:(1.4) minZ Ti+TTi f 0(x(t); u(t)) dt+G(x(Ti + T ));subje
t to(1.5) ddtx(t) = f(x(t); u(t)); t � Ti; x(Ti) = �x(Ti);where �x is the solution to the auxiliary problem on [Ti�1; Ti�1 + T ℄. IfT > Ti+1 � Ti we have overlapping domains. The solution on [0; T1℄ isobtained by 
on
atenation of the solutions on [Ti; Ti+1℄ for i = 0; :::; n� 1: Ifx(Ti) is observed, then the re
eding horizon 
ontrol is a state feedba
k sin
ethe 
ontrol on [Ti; Ti+1℄ is determined as a fun
tion of the state �x(Ti). Theoptimal pair (x(t � Ti); u(t � Ti)); t 2 [Ti; Ti + T ℄ satis�es the two pointboundary value problem (1.3) on the interval [0; T ℄ with the terminal 
ondi-tion p(T ) = Gx(x(T )) and the initial 
ondition x(0) = �x. System (1.3) withT1 repla
ed by T , with T suÆ
iently smaller than T1, is better 
onditionedand mu
h easier to solve numeri
ally than (1.3) itself.The theoreti
al justi�
ation of re
eding horizon 
ontrol te
hniques 
an beaddressed by means of the stabilization problem. Assuming that x = 0 isa steady state for (1.2) with u = 0 whi
h 
an be stabilized by means of anoptimal 
ontrol formulation (1.1) with T1 = 1. The question is addressedwhether stabilization 
an also be a
hieved by means of a re
eding horizonsynthesis. In order to establish asymptoti
 stability of the re
eding horizon
ontrol we utilize a terminal penalty term G(x(Ti+T )) rather than terminal
onstraints requiring that x(ti + T ) is 
ontained in an appropriate neighbor-hood of the origin whi
h is frequently used for re
eding horizon 
ontrol in
onne
tion with ordinary di�erential equations, see e.g. [NP℄. The fun
tionalG : X ! R will be 
hosen as an appropriately de�ned 
ontrol Liapunov fun
-tion, see De�nition 2.1 below. It will be shown that the in
orporation of theterminal 
ost G to the 
ost fun
tional provides asymptoti
 stability and thata suboptimal synthesis for minimizing (1.1) by re
eding horizon 
ontrol.2



Control Liapunov fun
tions re
eived a 
onsiderable amount of attention asa means of analyzing the stability of the 
ontrol system (1.1){(1.2), regardlessof issues related to optimal 
ontrol. We refer to the monograph [FK℄ andthe referen
es given there. The use of 
ontrol Liapunov fun
tions within the
ontext of re
eding horizon 
ontrol is a re
ent one. In [PND℄ 
ontrol Liapunovfun
tions were utilized as expli
it 
onstraints in the auxiliary problems toguarantee that the �nal state x(Ti + T ) lies within the level 
urve of the
ontrol Liapunov fun
tion that is determined by the traje
tory 
ontrolled bya minimum norm 
ontrol. The analysis in [JYH℄ utilizes 
ontrol Liapunovfun
tions as a terminal penalty as in (1.4). The stabilizing properties of theresulting re
eding horizon optimal 
ontrol strategy are analyzed under theassumption that f possesses an exponentially stabilizable 
riti
al point.Let us now outline the 
ontributions of this paper. In Se
tion 2 we intro-du
e and dis
uss a 
ontrol Liapunov fun
tion G (see De�nition 2.1 and The-orem 2.1), and then we establish monotoni
ity of the value fun
tion VT (x0):VT (x0) = inf �Z T0 f 0(x(t); u(t)) dt+G(x(T )) subje
t to (1:2)�with respe
t to T , i.e., VT (x0) � VT̂ (x0) � G(x0) for 0 � T̂ � T andx0 2 X, provided that G is a 
ontrol Liapunov fun
tion. This will imply(see, Theorems 2.2{2.4) thatG(xi+1)) + Z Ti+1Ti f 0(�x(t); �u(t)) dt � G(xi)where xi = �x(Ti). This implies that the states xi are 
on�ned to the levelset S� = fx 2 X : G(x) � G(x0) = �g. Assume that f(0; 0) = 0 andG(0) = 0 and that f 0(x; u) > 0 and G(x) > 0 ex
ept at (0; 0). Then, wehave G(xi+1) < VT (xi) � G(xi). If we assume orbit 
ompa
tness then for0 6= x0 2 S� we have G(xi+1) � �G(xi) for some � < 1. Hen
e G(xk) ��kG(x0) ! 0 as k ! 1, whi
h implies asymptoti
 stability. Moreover, iff 0(x; u) � !G(x) for some ! > 0, then G(xi+1) � e�!TG(xi) (see, Theorem2.4). In Se
tions 3 and 4 we formulate the 
ontrol problem (1.1)-(1.2) ina Gelfand triple formulation and as semi-linear 
ontrol systems respe
tively.We apply our formulations to 
on
rete examples in
luding the in
ompressibleNavier-Stokes equations and a semi-linear damped wave equation. We alsoinvestigate the important spe
ial situation when the quadrati
 fun
tionalG(x) = �2 jxj2, � > 0, 
an be 
hosen as a 
ontrol Liapunov fun
tion. This is3



the 
ase if the 
ontrol system (1.2) is 
losed loop dissipative, see De�nition3.1, whi
h is useful for 
ertain 
lasses of dissipative equations.In general this standard quadrati
 form is not a 
ontrol Liapunov fun
tion.In Se
tion 4 we analyze a quadrati
 form motivated from energy multipliersfor the semi-linear wave equations and show that it de�nes a 
ontrol Liapunovfun
tion. Under the assumption that the linear part of (1.2) is stabilizableby linear feedba
k, we give in Se
tion 5 the 
onstru
tion of a quadrati
 formbased on the Liapunov equation and show that it de�nes a lo
al 
ontrol-Liapunov fun
tion. We also provide an analysis for the 
hoi
e of the terminal
ost based on �nite dimensional approximations to the in�nite dimensional
ontrol Liapunov fun
tion.In our dis
ussion above it is assumed that the in�nite time horizon optimal
ontrol problem admits a solution, whi
h holds true, for example, in the 
aseof stabilizable steady states. In general this assumption may not satis�ed.Consider, for instan
e disturban
e attenuation problems and problems with
ost fun
tionals of tra
king type. As in the 
ase of �nite dimensional 
ontrolproblems [IK℄ the results in this paper 
an be extended to su
h 
ases byintrodu
ing a 
ontrol �-Liapunov fun
tion, where the positive 
onstant �represents the attenuation or tra
king rate.The re
eding horizon formulation requires knowledge of the state x(Ti)to employ it in feedba
k form. In the 
ase of partial observations one 
an
onstru
t a state observer system to estimate x(Ti) based on the linearizationof the state dynami
s about the optimal pair. This will be dis
ussed inforth
oming work. Finally we mainly treated bounded distributed aÆne
ontrols. We aim for extending our analysis to boundary 
ontrol and bilinear
ontrol problems.2 Lo
al 
ontrol Liapunov fun
tionsLet X and W be Hilbert spa
es representing the state and the 
ontrol spa
efor the autonomous 
ontrol system(2.1) 8<: ddtx(t) = f(x(t); u(t)); t > 0x(0) = x0;
4



with f(0; 0) = 0. Further let U be a 
losed 
onvex subset of W and, forT > 0, setUad = fu 2 L2lo
(0;1;W ) : u(t) 2 U for a.e. t 2 (0;1)g:For T 2 (0;1℄ and u 2 Uad we refer to x = x(�; x0; u) as solution to (2.1) on[0; T ) if(2.2) 8>>>><>>>>: x(0; x0; u) = x0;x(t+ s; x0; u) = x(t; x(s; x0; u); u(�+ s));for all 0 � s; 0 � t; 0 � t+ s � T:Contents permitting the dependen
e of x on x0 and u will be suppressed.Throughout we assume that for every x0 2 X and T > 0 there exists a
ontrol u 2 L2(0; T ;U) su
h that (2.1) admits a solution x = x(�; x0; 0) on[0; T ℄. When referring to the re
eding horizon strategy we shall for the sakeof simpli
ity assume that the grid is uniform and that tk = k T for k = 0; :::. The optimal 
ontrol problems are de�ned next. Letf 0 : X � U ! R+;R+ = fr � 0g, denote a 
ontinuous fun
tion and 
onsider the in�nite horizonproblem(2.3) infu2Uad Z 10 f 0(x(t); u(t))dt subje
t to (2.1):If f 0 is quadrati
 and positive de�nite in x and u then (2.3) represents astabilization problem for (2.1). As des
ribed in the introdu
tion the re
edinghorizon strategy 
onsists of a sequen
e of subproblems with 
ontrol horizonof length T . The building blo
ks of the strategy are given by the problems(2.4) 8>><>>: infu2Uad Z T0 f 0(x(t); u(t))dt + G(x(T ))subje
t to (2.1):Here G : X ! R+ is 
hosen as lo
al 
ontrol Liapunov fun
tion whi
h isde�ned next. 5



De�nition 2.1 A nonnegative 
ontinuous fun
tional G : X ! R with G(0) =0 is 
alled lo
al 
ontrol Liapunov fun
tional (CLF) for (2.3) if there exists� > 0 su
h that for all x0 2 S� = fx 2 X : G(x) � �g and T > 0 there existsa 
ontrol u = u(�; x0; T ) 2 Uad su
h that(2.5) Z Ts f 0(x(t); u(t))dt + G(x(T )) � G(x(s)); for 0 � s � T;where x is a solution to (2.1). G is 
alled global CLF if (2.5) holds for allx0 2 X.To investigate the re
eding horizon strategy we introdu
e the value fun
-tionals for the in�nite and the �nite horizon problems (2.3) and (2.4):VT (x0) = infu2Uad Z T0 f 0(x(t); u(t)) dt + G(x(T ));subje
t to (2.1) and V (x0) = infu2Uad Z 10 f 0(x(t); u(t) dt;subje
t to (2.1).Theorem 2.1 Suppose that G is a lo
al CLF for (2.3), and T > 0, x0 2 S�.Then we have VT (x0) � G(x0) and V (x0) � G(x0). If in addition G is aglobal CLF then V (x0) � VT (x0) for all x0 2 X.Proof. The �rst inequality is a 
onsequen
e of the de�nition of lo
al CLF.We also have G(x(T )) � G(x0) and hen
e x(T ) 2 S�. Therefore 
on
ate-nation of the solutions arising from repeated appli
ations of (2.6) on theintervals [(k � 1)T; k T ℄ allows to 
onstru
t a 
ontrol u 2 Uad with asso
i-ated solution x = x(�; u) su
h that for ea
h k � 1G(x(k T )) + Z k T(k�1)T f 0(x(t); u(t))dt � G(x((k � 1)T )):Summation over k implies thatG(x(k T )) + Z k T0 f 0(x(t); u(t))dt � G(x0):6



By the Lebesgue{Fatou lemma and non-negativity of f 0 we haveZ 10 f 0(x(t); u(t))dt � G(x0);and hen
e V (x0) � G(x0). Utilizing the properties for x to be a solution of(2.1) as spe
i�ed in (2.2) allows to employ the optimality prin
iple(2.6) V (x0) = infu2Uad �Z T0 f 0(x(t); u(t))dt + V (x(T ))� ;where x = x(�; x0; u), e.g., see [FS℄. If G is a global CLF then by theargument above V (x(T )) � G(x(T )). Combined with (2.6) this impliesV (x0) � VT (x0). �Theorem 2.2 (Monotoni
ity) Let G be a lo
al CLF and 0 � T̂ � T . Thenwe have VT (x0) � VT̂ (x0) for all x0 2 S�:Proof: Let Æ > 0 be arbitrary. Then there exists (�x; �u) with �u 2 L2(0; T̂ ;U)and �x a solution to (2.1) on [0; T̂ ℄ su
h that(2.7) Z T̂0 f 0(�x(t); �u(t))dt + G(�x(T̂ )) � VT̂ (x0) + Æ:We need to argue that �u 
an be 
hosen su
h that G(�x(T̂ )) � �. For thispurpose note that VT̂ (x0) � G(x0) by Theorem 2.1. If VT̂ (x0) = G(x0) thenby the de�nition of CLF �u 
an be 
hosen su
h that G(�x(T̂ )) � G(x0) =VT̂ (x0) � �. Otherwise G(x0) > VT̂ (x0) and 
hoosing Æ � G(x0) � VT̂ (x0),there exists again �u su
h that (2.7) holds and G(�x(T̂ )) � G(x0) � �. By(2.5) there is a 
ontrol ~u = u(�; �x(T̂ ); T � T̂ ) su
h thatZ T�T̂0 f 0(~x(t); ~u(t))dt + G(~x(T � T̂ )) � G(~x(0));where ~x = ~x(�; �x(T̂ ); ~u). Con
atenation of the solution and 
ontrol pairs(�x; �u) and (~x; ~u) de�nes a 
ontrol u with asso
iated solution x on [0; T ℄ sat-isfyingVT (x0) � Z T0 f 0(x(t); u(t))dt + G(x(T )) � Z T̂0 f 0(x(t); u(t))dt + G(x(T̂ )):7



Combined with (2.7) this implies that VT (x0) � VT̂ (x0) + Æ. Sin
e Æ > 0 was
hosen arbitrarily we have VT (x0) � VT̂ (x0) for 0 � T̂ � T . �Theorem 2.3 Assume that G is a lo
al CLF and that (�x; �u) is a solutionto the re
eding horizon problems (1:4) � (1:5) on [0;1). Then we have forevery x0 2 S� and k = 1; 2; � � �(2.8) G(xk) + Z k T0 f 0(�x(t); �u(t))dt � G(x0):If VT (x) � �TG(x) for some �T � 1 and T > 0, independently of x 2 S�,then G(xk) � �kTG(x0) for all k = 1; 2; � � � . If G is a global CLF thenVT (�x(t)) � VT (xk�1) for all t 2 [Tk�1; Tk℄.Proof. Inequality (2.7) follows from repeated appli
ation of (2.5). Notethat by 
onstru
tion xk 2 S� for all k. If VT (x) � �T G(x) for some �T � 1,T > 0, independently of x 2 S� then G(xk) � VT (xk) � �T G(xk�1) sin
ef 0 � 0 and by iteration G(xk) � �kT G(x0) for ea
h k = 1; 2; � � � . Utilizingthe properties in (2.2) satis�ed by a solution to (2.1) allows to apply theoptimality prin
iple whi
h impliesVT (xk�1) = Z t(k�1)T f 0(�x(t); �u(t))dt + VkT�t(�x(t)); for t 2 [(k � 1)T; k T ℄:If G is a global CLF then T ! VT (�x(t)) de
ays monotoni
ally by Theorem2.2 and 
onsequently VT (�x(t)) � VT (xk�1) � G(xk�1) for t 2 [(k � 1)T; k T ℄.� In Se
tion 4 we shall 
onsider a 
lass of problems where �T of Theorem2.3 
an be taken stri
tly small than 1. Next we give a 
ondition for � < 1whi
h is appli
able in 
ase that the 
ontrolled orbits are 
ompa
t.Let us de�ne for � > 0S =�(x; u) 2 X � L2(0; T ;U) : x = x(T ; x0; u); x0 2 S� ;G(x(T ; x0; u)) + Z T0 f 0(x; u)dt � G(x0)� ;and set BÆ = fx : jxj � Æg, for Æ > 0. 8



Proposition 2.1 Let G be a lo
al CLF and assume that S is 
ompa
t inX � L2(0; T ;U)weak, f 0(x; u) > 0 for x 6= 0, G(x) > 0 for x 6= 0, and that(x0; u)! x(T ; x0; u) is 
ontinuous from S � X �L2(0; T ;U)weak to X. Thenfor every Æ > 0 there exists � = �(T; Æ) < 1 su
h that(2.9) G(x(T ; �x; u)) � � G(�x);for all (�x; u) 2 S with �x =2 BÆ.Proof: Let �x 2 S, �x 6= 0, and let �u denote a 
ontrol su
h that (2.5) is satis�edfor the asso
iated traje
tory. There exists a nontrivial time interval on whi
hthe traje
tory x(�; �x; u) does not vanish and 
onsequently G(x(T ; �x; u)) <G(�x). If the assertion of the theorem is false then there exists a sequen
ef(�xn; un)g 2 S with �xn =2 BÆ su
h thatG(x(T ; �xn; un)) � (1� 1n) G(�xn):By 
ompa
tness there exist subsequen
es of f�xng and f�ung, denoted by thesame symbol, and (x̂; û) 2 S with x̂ =2 BÆ, su
h that lim �xn = x̂ in Xand lim �un = û weakly in L2(0; T ;U). As a 
onsequen
e of the 
ontinuityassumption limn!1x(T ; �xn; �un) = x̂ and hen
e G(x(T ; x̂; û)) � G(x̂), whi
his impossible. �Proposition 2.1 asserts that orbits originating in S� and 
ontrolled by there
eding horizon strategy de
ay into arbitrary small neighborhoods of theorigin with a uniform de
ay rate.Theorem 2.4 (Stability) Assume that G is a global CLF and that f 0(x; u) �!G(x) for some ! > 0 and all x 2 X and u 2 U , and that (u(t); x(t))minimizes R T0 f 0(x(t); u(t)) dt+G(x(T )) over u 2 Uad subje
t to (2.1). Thenwe have G(x(T )) � e�!TG(x0):Proof: By the optimality prin
iple(2.10) Z �t f 0(x(s); u(s)) ds+ VT�� (x(�)) = VT�t(x(t))for every 0 � t � � � T . From (2.10) it follows that t! g(t) = VT�t(x(t)) isa W 1;1{fun
tion. By Theorem 2.1 and the lower bound on f 0 it follows that! Z �t VT�s(x(s)) ds+ VT�� (x(�)) � VT�t(x(t))9



and 
onsequently !g(t) + ddt g(t) � 0 for a.e. t 2 [0; T ℄:Multiplying by e!t and integrating on [0; T ℄ implies thate!Tg(T )� g(0) � 0: �3 Gelfand triple formulationLet V � X = X� � V � be a Gelfand triple, W = U , and let f : V �U ! V � be a 
ontinuous mapping. We assume that for every x0 2 X andu 2 L2lo
(0;1;U) there exists � > 0 (depending on jx0jX and R �0 juj2 ds) su
hthat there exists a unique solution x = x(�; x0; u) 2 W (0; �) = L2(0; � ;V ) \H1(0; � ;V �) satisfying(3:1) x(t)� x0 = Z t0 f(x(s); u(s)) ds in V �and jx(t)� x0jX ! 0 as t! 0+. Moreover we assume that jx(t)� x0jV ! 0as t ! 0+ if x0 2 V . Note that W (0; T ) is 
ontinuously embedded intoC(0; T ;X) (i.e., jx(t)j2H � R t0 (jx(s)j2V + j ddtx(s)j2V �) dt ).We shall say that the solutions to (3.1) depend 
ontinuously on x0 2 Xand u 2 L2(0; � ;U) if for every C > 0 there exists � > 0 and a 
ontinuous,nonde
reasing fun
tion MC(t) with MC(0) = 1 su
h thatjx(�; x0; u)� x(�; y0; v)j2W (0;t) � MC(t) (jx0 � y0j2X + Z t0 ju(s)� v(s)j2):for all t � � , x0; y0 2 X and u; v 2 L2(0; � ;U) satisfyingjx0j; jy0j � C and Z �0 juj2 ds; Z �0 jvj2 ds � C2:We have the following relationship between 
ontrol Liapunov fun
tionsand the Hamilton-Ja
obi inequality (3.2) given below.
10



Theorem 3.1 Assume that G is a 
onvex C1-fun
tional on X, with G(0) =0, and that x 2 V ! G0(x) 2 V is 
ontinuous.(a) (Ne
essity) Assume that for every x 2 V(i) u! f(x; u) is 
ontinuous from U endowed with the weak topology to V �and u! f 0(x; u) is weakly lower semi-
ontinuous,(ii) U is weakly 
ompa
t or u! f 0(x; u) is 
oer
ive.Then, if G is a global 
ontrol Liapunov fun
tion, there exists for all x0 2 Van element u 2 U su
h that(3:2) hG0(x0); f(x0; u)iV;V � + f 0(x0; u) � 0:(b) (SuÆ
ien
y) Assume that the solutions to (3.1) depend 
ontinuously onx0 2 X and u 2 L2(0; � ;U) and that f with f(0; 0) = 0 is 
ontinuous in thesense that(3:3) f(xn; un)! f(x; u) weakly in L2(0; � ;V �)if xn ! x in W (0; �) and un ! u in L2(0; � ;U). Suppose that the level-sets S� are bounded subsets of X and that there exists a lo
ally Lips
hitzeanfun
tion � : X ! U , with �(0) = 0 and su
h that for all x 2 V andu = ��(x)(3:4) hG0(x); f(x; u)iV;V � + f 0(x; u) � 0:Then G is a global 
ontrol Liapunov fun
tion.Proof: (a) Suppose 
ondition (3.2) does not hold. Then there exits anx0 2 V su
h that hG0(x0); f(x0; u)iV;V � + f 0(x0; u) > 0for all u 2 U . Due to assumptions (i) and (ii) the minimal value of the thefun
tional u! hG0(x0); f(x0; u)iV;V � + f 0(x0; u) is attained on U and hen
ethere exists � > 0 su
h that(3:5) hG0(x0); f(x0; u) + f 0(x0; u) � � > 0 for all u 2 U:By 
onvexity of G and (2.5)hG0(x(t)); x(t)� x(t� h)h iV;V � � G(x(t))�G(x(t� h))h � �1h Z tt�h f 0(x; u) ds:11



Sin
e 1h R tt�h f(x(s); u(s)) ds! f(x(t); u(t)) in V �1h R tt�h f 0(x(s); u(s)) ds! f 0(x(t); u(t))a.e. t 2 [0; � ℄ as t! 0+. Thus, we havehG0(x(t)); f(x(t); u(t))iV;V � + f 0(x(t); u(t)) � 0for a.e. t 2 [0; � ℄. Sin
e x(t)! x0 in V , this 
ontradi
ts (3.5).(b) (SuÆ
ien
y) Let � > 0 be arbitrary. By assumption S� is bounded.Hen
e there exists Æ > 0 su
h that S� � BÆ = fx : jxjX � Æg.First we prove that the assumptions on � guarantee the existen
e of a uniquelo
ally de�ned solution x 2 W (0; �) to(3:6) x(t) = x0 + Z t0 f(x(s);��(x(s)) ds;for every x0 2 BÆ. Uniqueness is a 
onsequen
e of the lo
al Lips
hitz propertyof �. To verify existen
e let x0 2 V \BÆ and set C = 2Æ. De�ne a sequen
exk in W (0; �) by xk+1(t) = x(t; x0;��(xk)):From the following arguments it follows that xk is well-de�ned for � suÆ-
iently small. In fa
t let � be su
h that (3.1) admits a unique solution ifjx0jX � C and R �0 juj2 ds � C. Let � be further 
hosen su
h thatqMC(�)(14 + j�j2 �) � 1 and max(j�j2�;p(MC(�) �) j�j) < 1;where j�j denotes the Lips
hitz 
onstant of � on the ball in X with 
enter 0and radius C. If jxk(t)jX � 2jx0jX = C on [0; � ℄, then uk = ��(xk) satis�esZ �0 jukj2 ds � C2j�j2�and thus by the lo
al 
ontinuous dependen
e assumptionjxk+1(t)jX �qMC(t) (jx0j2X + C2j�j2 t) � Con [0; � ℄ sin
e qMC(�)(14 + j�j2 �) � 1. If we let x0(t) = x0 on [0; � ℄ thenxk 2 � = fx 2 C(0; � ;X) : jx(t)jX � C on [0; � ℄g for all k. For the iterateswe �nd jjxk+1 � xkjj �pMC(�)� j�j jjxk � xk�1jj;12



where jj � jj denotes the norm in C(0; � ;X). Thus fxkg is a Cau
hy sequen
ein C(0; � ;X) sin
e pM(�)� j�j < 1. Note thatjxk+1 � xkjW (0;�) �pMC(�)� j�j jjxk+1 � xkjj:Thus, there exists x 2 W (0; �) \ � su
h that xk 
onverges to x strongly inW (0; �) and thus uk ! u = ��(x) as k !1. The 
ontinuity 
ondition forf implies that x 2 W (0; �) is a solution to (3.6).Let E be a dense subset of Lebesgue points in (0; T ) su
h that for t 2 E(3:7) limh!0 1h Z t+ht f(x(s);��(x(s)))ds = f(x(t);��(x(t))) in V �:Sin
e x0 2 V we have from the general assumptions of this se
tion thatx 2 C(0; � ;V ). By 
onvexity of G we obtainG(x(t + h))�G(x(t)) � hG0(x(t+ h)); x(t + h)� x(t)iV;V �:By (3.7) and 
ontinuity of x! G0(x) from V to V we haveddt G(x(t)) � hG0(x(t)); f(x(t);��(x(t)))iV;V �; for t 2 E:Utilizing (3.4) implies thatddt G(x(t)) � �f Æ(x(t);��(x(t))); for t 2 E:It follows that(3:8) G(x(�)) + Z �S f Æ(x(t);��(x(t)))dt � G(x(s));for 0 � s � � and x0 2 V \ BÆ. A density argument together with the
ontinuous dependen
e assumption imply that (3.8) holds for all x0 2 BÆ. Inparti
ular (3.8) holds for x0 2 S� and hen
e a unique global solution to (3.6)exists for every x0 2 S� and (2.5) holds for every T > 0. �3.1 Quadrati
 Terminal PenaltyIn this se
tion we dis
uss the 
ase when G(x) = �2 jxj2X ; � > 0, 
an be usedas global CLF. 13



De�nition 3.1 The 
ontrol system (1.1){(3.1) is 
losed-loop dissipative ifthere exists a lo
ally Lips
hitzian feedba
k law u = �K(x) 2 U su
h thath�x; f(x;�K(x))iV;V � + f 0(x;�K(x)) � 0for some � > 0 and all x 2 V .If (1.1){(3.1) is 
losed-loop dissipative, then �2 jxj2 
an serve as a 
ontrolLiapunov fun
tion for (2.1){(2.2) by (3.2) of Theorem 3.1. In general this isnot ne
essarily the 
ase. But we have the following result.Theorem 3.2 Let G(x) = �2 jxj2 and let V (x) and VT (x) be the in�nite andthe �nite horizon value fun
tionals, respe
tively. We assume that for everyx 2 X there exists an admissible 
ontrol u�(t) = u�(t; x) su
h thatV (x�(T )) + Z T0 f 0(x�(t); u�(t)) dt = V (x)for all T � 0 and that the 
orresponding traje
tory x�(t) satis�es jx�(t)j �M e�!tjxj, for M � 0, ! > 0 and all t � 0. Then,VT (x) � V (x) + M2�2 e�2!T jxj2:Moreover, if V (x) � �2 jxj2, thenVT (x) � (�2 + M2�2 e�2!T )jxj2 � (�� +M2e�2!T )G(x):Proof: Note thatVT (x) � Z T0 f 0(x�(t); u�(t)) dt+V (x�(T ))+G(x�(T ))�V (x�(T )) � V (x)+G(x�(T ));whi
h implies the �rst assertion. The se
ond assertion simply follows fromthe �rst one. �Theorem 3.2 implies that for suÆ
iently large � > 0 there exists �T > 0su
h that for T � �T we have G(x(T )) � VT (x) � �T G(x) with �T < 1 andthus in the notation of Theorem 2.3 we have G(xk) � �kTG(x0), for k 2 N .14



3.2 Navier Stokes equationsWe 
onsider the in
ompressible Navier-Stokes equations in 
: the velo
ity�eld v = v(x; t) 2 Rd and the pressure p = p(x; t) 2 R satisfy(3:9) vt+v �rv+grad p = ��v+Bu(t) and div v = 0; x 2 
; t > 0;with boundary 
ondition v = 0 on � and initial 
ondition v(x; 0) = v0(x).Here 
 is a bounded open domain Rd; d = 2; 3 with suÆ
iently smoothboundary �, � > 0 is the kineti
 vis
osity and Bu(�) represents the 
ontrolbody for
e. We use the following standard fun
tion spa
es (e.g., see [Te℄). LetV be the divergen
e-free subspa
e of H10 (
)d de�ned by V = f� 2 H10 (
)d :div � = 0g and let X be the 
ompletion of V with respe
t to L2(
)d-norm,i.e. X = f� 2 L2(
)d : div � = 0; and n � � = 0 on �g:X is a 
losed subspa
e of L2(
)d when equipped by j�jX = j�jL2 as norm.Let P be the orthogonal proje
tion of L2(
)d on X. The norm in V is givenby j�jV = jr�jL2. We de�ne the Stokes operator A0 2 L(V; V �) by(3:10) hA0�;  iV ��V = �(�;  ) = (r�;r )L2(
);for �;  2 V . The operator A0 has a 
losed self-adjoint restri
tion (A0 =�P�) on X with dom (A0) = H2(
)d \ V . Also, de�ne the trilinear form bon V � V � V by b(u; v; w) = Z
 ui(Dxi vj)wj dx;and assume that B 2 L(U;X): Then (3.9) 
an be expressed as (3.1) withhf(x; u);  iV �;V = hA0x+ Bu;  iV �;V + b(x; x;  );for x;  2 V and u 2 U . The trilinear form b satis�esb(v; �;  ) + b(v;  ; �) = 0and in the two dimensional 
ase there exist 
onstants M1;M2 su
h thatjb(v; �;  )j �M1 jvj1=2H jvj1=2V j�jV j j1=2H j j1=2Vjb(v; �;  )j �M2 jvj1=2H jvj1=2V j�j1=2V j�j1=2dom (A0)j jH15



for all v; �;  2 V , respe
tively � 2 dom(A0).Let us 
onsider the feedba
k operator � = �B�, with � > 0. Clearly �satis�es the assumptions of Theorem 3.1 (b). With this preparation we havethe following:Proposition 3.1 Assume that d = 2 and T > 0 is arbitrary. For everyx0 2 X and u 2 L2(0; T ;U) there exists a unique solution x 2 W (0; T )to (3.9), and the 
ontinuity property (3:3) holds. If x0 2 V , then x 2C(0; T ;V ) \ L2(0; T ; dom (A0)). Moreover G(x) = �2 jxj2X , with � > 0 is a
ontrol Liapunov fun
tion for the 
ost-fun
tional f 0(x; u) = �2 (jxj2 + juj2),provided � is suÆ
iently small.The �rst part follows from standard results on Navier-Stokes equationsand the se
ond one is a 
onsequen
e of Theorem 3.1 (b) observing that foru = �� B�; � > 0hx; f(x; u)iV;V � = �hA0x; xi � � jB�xj2;is negative de�nite by (3.10).4 Semi-linear 
ontrol systemsConsider the 
ontrol system of the form(4:1) ddtx(t) = Ax(t) + F (x(t)) +Bu(t); x(0) = x0 2 X;where A is the in�nitesimal generator of a 
ontra
tion semigroup fS(t) :t � 0 on X, B 2 L(U;X) and u 2 L2lo
(0;1;U). The nonlinear fun
tionF : X ! X is lo
ally Lips
hitz in the sense that for ea
h C 2 R there existsa 
onstant kC su
h thatjF (x)jX � kC and jF (x)� F (y)jX � kC jx� yjX;for all x; y 2 X satisfying jxj; jyj � C. It 
an be proved (e.g., see [Ta℄) thatfor every x0 2 X and u 2 L2lo
(0;1;U) there exists a unique lo
ally de�nedmild solution x in C(0; � ;X) to (4.1), i.e., there exists � > 0 (depending onjx0j and R �0 juj2 dt) su
h thatx(t) = S(t)x0 + Z t0 S(t� s)(F (x(s)) +Bu(s)) ds; for t 2 [0; � ℄:16



Let Jn = (I � 1nA)�1 denote the resolvent of A. Then we have the followingresult:Theorem 4.1 Assume that G(x) is a C1-fun
tional on X satisfying(4:2) (G0(x); Ax+ F (x))X � !G(x) + 
(x); for all x 2 dom (A);for ! 2 R and a 
ontinuous fun
tion 
 : X ! R. Then the lo
ally de�nedsolution x(�) to (4.1) satis�esG(x(t)) � e! tG(x0) + Z t0 e!(t�s) (
(x(s)) + (G0(x(s)); B u(s))) ds;for t 2 [0; � ℄.Proof: Let xn(t) = Jnx(t). Then xn 2 H1(0; � ;X) \ C(0; � ; dom (A)) andddtxn(t) = Axn(t) + Jn(F (x(t)) +Bu(t)) a.e. in (0; �):Thus ddtG(xn(t)) = (G0(xn(t)); Axn(t) + F (xn(t)) +Bu(t)) + rn(t);where rn(t) = (G0(xn(t)); JnF (x(t))� F (xn(t)) + JnBu(t)� Bu(t)):By assumptionddt G(xn(t)) � !G(xn(t)) + 
(xn(t)) + (G0(xn(t)); B u(t)) + rn(t);and using Gronwall's inequality(4:3)G(xn(t)) � e! tG(x0) + Z t0 e!(t�s) (
(xn(s)) + (G0(xn(s)); B u(s)) + rn(s)) ds:Sin
e xn ! x(t) in C(0; � ;X) and Jn ! I as n!1 we haveZ t0 e!(t�s)rn(s) ds! 0 as n!1;17



and 
laim follows by taking the limit in (4.3). �Theorem 4.2 (SuÆ
ien
y) Suppose that G is a C1{fun
tional on X andthat �: X ! U is lo
ally Lips
hitz su
h that(4:4) (G0(x); Ax + F (x)� B�(x))X � !G(x)� f 0(x;�(x)) + 
;for all x 2 dom (A), where ! 2 R, 
 is a nonnegative 
onstant and f 0 : X �U ! R+ is 
ontinuous. If G(x) � r(jxjX) for a 
ontinuous unboundedfun
tion r : R+ ! R+, then the 
losed loop systemddtx(t) = Ax(t) + F (x(t))�B�(x(t)); x(0) = x0has a unique globally de�ned mild solution. Moreover, if ! � 0 and 
 = 0,then G is a global 
ontrol Liapunov fun
tion for the 
ontrol system (2.3),(4.1).Proof: From Theorem 4.1 it follows that(4:5) G(x(t)) � e! tG(x(0)) + Z t0 e!(t�s)(�f 0(x(s);�(x(s))) + 
) ds;for t 2 [0; � ℄. In parti
ular this implies thatG(x(t)) � e!tG(x(0)) + 
 e!t � 1! ;for t 2 [0; � ℄. Hen
e global existen
e follows from G(x) � r(jxjX) and the
ontinuation method. For ! � 0 and 
 = 0 the fun
tional G is a CLF by(4.1). �4.1 Semi-linear Wave EquationIn this subse
tion we demonstrate the appli
ability of the above results tothe semi-linear wave equation;(4:6) ytt +	(yt)� yxx + y3 = u(x; t)�I(x); x 2 (0; 1);with boundary 
onditions:y(t; 0) = 0; yx(t; 1) = 0;18



where  : R ! R is a Lips
hitz 
ontinuous fun
tion satisfying  (s)s � 0for s 2 R and I � (0; 1). To express (4.6) in the abstra
t form (4.1) weintrodu
e z(t) = (y(t; �); yt(t; �)) 2 X with X = H1L(0; 1)� L2(0; 1) whereH1L(0; 1) = f� 2 H1(0; 1) with �(0) = 0g;equipped with j�j2 = Z 10 j�xj2 dx. De�ne the linear operator AA(�;  ) = ( ; �xx)withdom (A) = f(�;  ) 2 X :  2 H1L(0; 1) and � 2 H2(0; 1); �x(1) = 0g;and the nonlinear operatorF (�) = (0;��3 � 	( )):Let B be the linear operator on U = L2(0; 1) de�ned byBu = (0; �I(x)u):Then (4.6) 
an be written as (4.1).Let u = 0 and de�neG(z) = G(�;  ) = 12 Z 10 (j j2 + j�xj2) dx+ 14 Z 10 j�j4 dxThen (G0(z); Az + F (z)) = � Z 10 	( ) dx � 0;for all z 2 dom(A) and hen
e (4.2) is satis�ed with ! = 
 = 0 .Next we 
onsider the linear wave equation(4:7) ytt = yxx + u(x; t)�I(x); x 2 (0; 1)with boundary 
onditions:y(t; 0) = 0; yx(t; 1) = 0;19



and aim for establishing (4.4) with(4:8) f 0(x; u) = 
2(jxj2X + juj2L2(I));for some 
 > 0. Let(4:9) G(�;  ) = Z 10 12(j j2 + j�xj2) dx+ Z 10 a(x)�x dx+ b Z 10 � dxand u = ��yt �I = �� �I where b and � are positive 
onstants. ForI = (x1; x2) � (0; 1) we de�ne the pie
ewise linear fun
tion a on (0; 1) by
a(x) = �8>>>>><>>>>>:

x on [0; x1℄x2 � x1 � 1x2 � x1 (x� x1) + x1 on (x1; x2℄x� 1 on (x2; 1℄;with � > 0. Then for z = (�;  ) 2 dom(A) we have(4:10)J = (G0(z); Az � �(0;  �I)) = �� ZI j j2 + Z 10 a(x)(  x + �x(�xx � � �I )) dx+b Z 10 (j j2 + �(�xx � � �I )) dx = J1 + J2 + J3:Here J2 � � Z 10 12 a0 (j j2 + j�xj2) dx+ �� j j2j�xj2and J3 � b Z 10 (j j2 � j�xj2) dx+ b� j j2j�xj2:Note that a0 = � (1 � 1x2 � x1 ) < 0 on I and on a0 = � > 0 on I
. Assumethat x2 � x1 > 12 and let b = �4(x2 � x1). For 
 = (12 � 14(x2 � x1))� > 0,we have b + a02 = 
 on I and 12 a0 � b = 
 on I
. Thus, if � = b + 
� a0jI2 =20



�2(x2 � x1) = 2b, thenJ � �
 Z 10 (j j2 + j�xj2) + �� j j2j�xj2 + b� j j2j�xj2:Hen
e we 
an sele
t 0 < � < 1 su
h that(4:11) J � � 
2 Z 10 (j j2 + j�xj2) dx:Further � > 0 
an be 
hosen su
h thatk1(j�xj2 + j j2) � G(�;  ) � k2(j�xj2 + j j2);for positive 
onstants k1; k2 independent of (�;  ) 2 X. From these estimatesTheorem 4.2 is appli
able and we have:Proposition 4.1If �; �; b; 
 are suÆ
iently small positive 
onstants and 12 < x2� x1, thenG de�ned in (4.9) is a 
ontrol Liapunov fun
tion for the linear system (4.7)with 
ost given by (4.8) and feedba
k law u = ��yt�I . Moreover (4.4) holdswith ! < 0 and 
 = 0.We now turn to the nonlinear equation (4.6).Proposition 4.2 Assume 12 < x2 � x1 and j	( )j � d j j with d � 0suÆ
iently small. Then there exists positive 
onstants �; 
 su
h that Gde�ned byG(z) = Z 10 12(j j2 + j�xj2) + 14 j�j4 dx+ Z 10 a(x)�x dx + b Z 10 � dxis a 
ontrol Liapunov fun
tion for the nonlinear system (4.6) with 
ost givenby (4.8) and feedba
k law u = ��yt�I .Proof: We show that (4.4) holds with ! = 0 and 
 = 0. If J is de�ned as in(4.10), then(4:12) (G0(z); Ax + F (z)� � (0;  �I))X =� J + Z 10 a(x)�x(��3 �	( )) dx+ b Z 10 �(��3 � 	( )) dx:21



where J is de�ned as in (4.10). Here� Z 10 (a(x)�x �3 + b �4) dx = Z 10 (14 a0 � b)�4 dx � 0sin
e a0 � � and b � �4 . Thus, the proposition follows from (4.11){(4.12). �5 Lo
al 
ontrol Liapunov fun
tionIn this se
tion we des
ribe a method for 
onstru
tion of lo
al 
ontrol Lia-punov fun
tions based on the Liapunov equation. Consider the semi-linear
ontrol system(5:1) ddtx(t) = Ax(t) + F (x(t)) +Bu(t); x(0) = x0 2 X;with F lo
ally Lips
hitz 
ontinuous. Assume that A � � BB�, � > 0, gen-erates an exponentially stable C0{semigroup S(t) on X. Let Q denote anonnegative, self{adjoint operator on X, and let � be the bounded, nonneg-ative self{adjoint solution to the Liapunov(5:2) 2((A� � BB�)x;�x)X + (Qx; x) = 0 for all x 2 dom (A);that is, �x = R10 S�(t)QS(t)x dt, for x 2 X.We de�ne G(x) = 12 (jxj2 + (�x; x)); for x 2 X;and set u = �� B�x. For this 
hoi
e of u there exists a unique lo
al solutionx(�) of (5.1) on [0; � ℄, � > 0. Assume that there exists a 
ontinuous fun
tion
 : X ! R su
h that(5:3) (Ax; x)� � jB�xj2 + (x; F (x))� 12 (Qx; x) + (F (x);�x) � 
(x);for all x 2 dom (A). ThenG(x(t)) � G(x0) + Z t0 
(x(s))ds for s 2 [0; � ℄:Assume further that there exists � > 0 su
h that(5:4) 
(x) + f 0(x;�� B�x) � 0; for all x 2 S�:Then (5.1) with u = �� B�x admits a global solution for x0 2 S� and G isa lo
al 
ontrol Liapunov fun
tion for (1.1) subje
t to (5.1).22



5.1 ExampleAs an example 
onsider the 
ontrolled rea
tion{di�usion system(5:5) yt(t; x) = Dyxx(t; x) + f(y) + mXi=1 bi(x)ui(t); for t > 0; x 2 (0; 1)with boundary 
onditions y(t; 0) = y(t; 1) = 0, where y : R+ � [0; 1℄ ! Rd,D is a positive diagonal matrix, f : Rd ! Rd is the rea
tion rate and bi 2L1((0; 1);Rd) is the i�th 
ontrol distribution fun
tion.Let X = L2((0; 1);Rd), U = Rm and setAy = Dyxx with dom (A) = fy 2 X : yx; yxx 2 X : y(0) = y(1) = 0g;[F (y)℄(x) = f(y(x));[Bu℄(x) = mXi=1 bi(x)ui; for x 2 (0; 1):If F is lo
ally Lips
hitz in the sense of Se
tion 4, with F (0) = 0, and, forexample, Q = ÆI, with Æ > 0, and f 0 is quadrati
, then it is straightforwardto 
he
k 
ondition (4.5).Alternatively one 
an utilize the Gelfand triple formulation of (5.3) withV = H10 ((0; 1);Rd). The left hand side of (5.3) be
omes�(Dyx; yx)� � jB�yj2 � 12(Qy; y) + (F (y); y + �y);whi
h suggests to introdu
e an equivalent norm kyk on V de�ned byjjyjj2 = (Dyx; yx) + � jB�yj2 + 12(Qy; y):Suppose that F satis�esj(F (y); y + �y)X j � kyk2q(jyj); for all y 2 X;for some q : R+ ! R. Then, if there exists � > 0 su
h that(q(jyj)� 1) jjyjj2 + f 0(y;�B�y) � 0 for all y 2 S�;(5.4) is satis�ed with 
(y) = (q(jyj)� 1)kyk2, (5.5) admits a global solutionfor all y(0) 2 S�, and G is a lo
al 
ontrol Liapunov fun
tion.23



5.2 ApproximationLet Xn be �nite dimensional subspa
es of X with U1n=1Xn = X, and denoteby Pnthe orthogonal proje
tions from X onto Xn . Let fAng be a sequen
eof approximations of A on Xn satisfying(AnPnx; x)X � 0; for all x 2 X;and j(I � An)�1Pnx� (I � A)�1xjX ! 0; as n!1for all x 2 X. By the Trotter-Kato theoremjeAntPnx� S(t)xjX ! 0; as n!1for all x 2 X, uniformly on bounded t�intervals. Let Bn = PnB and Qn =PnQPn. We further assume that(5:5) je(An�� BnB�n)tPnxj �Me�!t jxjfor 
onstants M � 1 and ! > 0 independent of x 2 X. Let �n : Xn ! Xnsatisfy the Liapunov equation on Xn(An � � BnB�n)��n + �n(An � � BnB�n) +Qn = 0:That is, �n = Z 10 e(An�� BnB�n)�tQne(An�� BnB�n)t dt:From our assumptions it follows that, �nPnx ! �x as �n ! 1 for allx 2 X. We 
onstru
t a sequen
e of fun
tions Gn(x) on X byGn(x) = 12 (jxj2 + (�nPnx; Pnx)):Note that(Ax� � BB�x;�nPnx)= �12 (Qnx; x) + (Ax� AnPnx;�nPnx)� � (BB�x�BnB�nx;�nPnx):Suppose 
ondition (5.3) holds. Then we haveGn(x(t)) � Gn(x0) + Z t0 (
(x(t)) + en(x(t))) dt;24



where en(x) = 12((Q�Qn)x; x) + (Ax� AnPnx;�nPnx)�� (BB�x� BnB�nx;�nPnx)� (F (x);�x� �nPnx):Here, we note that (Ax� AnPnx;�nPnx) = 0;if Xn and X?n are invariant subspa
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