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Abstract In this paper we develop a comparison lemma for viscosity solutions for the Hamilton—
Jacobi equations. We consider locally Lipschitz solutions with quadratic growth and assume the
quadratic growth of the Hamiltonian. An error estimate of viscosity solutions using the weighted

sup norm is obtained.

1 Introduction

In this paper we discuss the uniqueness and error estimate for viscosity solutions of Hamilton—
Jacobi equations in the class of locally Lipschitz continuous functions with quadratic growth. Such
problems are motivated from Hamilton—Jacobi equations that arise in optimal control problems

(e.g. [FS],[Mc]) with a quadratic cost. That is, we consider the equation in R:
Vot vt Tl =0 e ek V() =0
— |2 Ve+ —|Va —|z|*| =0, 2 , =0.
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Then it has the two smooth solutions

VEr) = 5 (3 £ 72 (37— 02) fal?

and infinitely many viscosity solutions provided that v > o. The objective of this paper is to
develop the comparison principle for viscosity solutions which are locally Lipschitz with quadratic

growth. For example, we will prove that V'~ is a unique solution to the above in the class 3;
Y={uve C(R): |u(x) = u(y)| < car|x —y| for [al], |y| < r}

where 0 < ¢5 < 2. The question of uniqueness for viscosity solutions of Hamilton—Jacobi equations
has been considered in a number of papers, particularly by Ishii [Is], Crandall-Ishii-Lions [CIL] and
McEneaney [Mc].

The result in this paper is new and improves the existing results in the following manner. We

establish the error estimate of the form

1
sup ——— (u(z) —v(z))T, ¢>0
Swp e () - ()



in terms of the problem data. Here, u, v are solutions to the Hamilton-Jacobi equation for the

Cauchy problem (u = u(t,z))

(1.1) we+ H(tz,u,u,) =0, u(0,2) = up(x)
in [0,7) x R™ and as well as for the stationary problem

(1.2) w+ H(z,u,u,) =0.

Our approach is motivated by the one of [Mc]. We consider the class ¥, ., of solution u that are

continuous and locally Lipschitz in z satisfying
(1.3) lu(t, ) — u(t,y)| < (c1 +car) |z — yl

fort € [0,7] x B, where B, = {z € R" : || < r}. We assume that there exists constants ag, a; <0
and ay > 0 and a function ¢ € C(R"™)" such that

(1.4) H(t,2,0,q) = H(t,2,u,p) < ag (u—v) + (a(2),p = ¢) + (a5 + az(er + e27)) [p— g
for all t € [0,7], 2 € B,, u > v, and |p|, |q| < (¢1 + ca7), where (a(z),2) < a;|z|* for z € R". We
use the comparison function of the form

1 1 |z —y[?
— = Ur) = ——F= v — .
c+ |$|2 ( ) c+ |y|2 (y) B

(I)(xvy) =

which is different from the one used in [Mc]. Using this comparison function we are able to establish
the error estimate; assume that u, v € X, .,, u is a subsolution of u; + H(t,z,u,u;) = f and vis a
supersolution of v, + H(t,z,v,v;) = g. Then, for any ¢ > 0 there exists a constant ¢ > 0 (depends

on ¢ and ¢yaz + as) such that for ¢ > ¢

1.5 su
(1.5)  sup c+ |22 R e |z|2

(u(tvx) — v(tvx))—l_ < et sup (UO - UO)-I— /t 6w(t—s) sup (f(8,$) — g(s,x))"' ds

R7 c+ |z|?

where w = ag 4+ 2 max(0, a; + cgaz) + <.
In [Mc] the following comparison result is proved. Suppose V(t,2), W(t,z) are continuous and

uniformly locally Lipschitz in  with
V(t,z) = V(t,y)l < Kp(V) |z —yl, [W(tz)-W(t,y)| < Kr(W)lz—yl,

forall z, y € Q¥ = [0,T] x {x € R* : |2| < R}. Let W be a viscosity subsolution to (1.1) and V be
a viscosity supersolution to (1.1). Assume there exists a constant o < oo such that for all R < o
there exists a kg such that if there exists a (t,2) € QF such that W(t,z) > V(t,z), then

(1.6) H(t,z,V(t,z),p)— H(t,z, W(t,2),q) < kr(W(t,z)— V(t,z))+ a(l+ R)|p—q|



for all p, ¢ € R"™ such that |p|, |¢| < max{Kr(V), Kp(W)}. Then W <V if W <V at t =0.

IfvV, W e X, ., then our assumption is similar to (1.6) except the term (a(z),p — ¢). This
term allows us to have a shaper estimate of the growth constant w in (1.5) and the inclusion of a
drift term a(z) - p with @ € C'(R") in the Hamiltonian H. The estimate (1.5) gives not only the
comparison result but also the error estimate and continuity result of viscosity solutions in class
Y- We also discuss the stationary problem (1.2) and the term (a(z),p — ¢) plays the more
essential role in establishing the error estimate. An extension to classes of polynomial growth at oo
is of important but is not discussed in this paper. We restricted our analysis for class X, ., since
the nonlinear regulator problem discussed below as well as the corresponding differential game can
be included in the class.

The existence of viscosity solutions in class X, ., to Hamilton-Jacobi equation (1.1) and (1.2)
under quadratic growth conditions (2.1) and (3.1) on the Hamiltonian H has been discussed for
example [BEN],[MI],[It]. The Hamilton-Jacobi equation we consider here is, for example, motivated

from the optimal control problem;

T o
(17) min J(s,yiu) = [ (). u(t) di + (o (7))
subject to the control system
(1.8) %w(t) = f(t,z(t),u(t)), t>s with z(s)=y; and u(t)e U

where U is a closed convex set in R™. We consider the case when the performance index f°(¢,z,u)
has the quadratic growth both in (2, u) and ¢ is of quadratic growth at infinity. Under appropriate
conditions on C' functions f: Rx R" x R™ — R" and f®: Rx R" x R™ — Rand g: R® — R"
there exists an optimal control to problem (1.7)-(1.8) and the value function V : R X R" — R
defined by

V(T — s,y) =inf J(s,y;u) subject to (1.8)
over u € L'(s,T; R™), is a viscosity solution to (1.1) with V(0,2) = g(z). The Hamiltonian H is

given by

H(tv Z, u,p) = ilelg {—(p, f(tv Z, u)) - fo(tv Z, u)}

Let fO(t,a,u) = ((t,z)+ % |u|?, U = R™. Thus, (1.5) implies that

1
su Vit x) = V2t 2)| < et (su
iy A R . AP e

9" () — g*(2)]

t

+ su
L S T

|0 (s,2) — (*(s,2)| ds)

for appropriately chosen ¢ > 0 and w € Rt, where V' € Y10, are the viscosity solutions to (1.1)
(corresponding to the data (g°, (') appearing in problem (1.7)).



We conclude this section by recalling the definition of viscosity solution. We consider the first
order PDE of the form

(1.9) F(y,u,uy) =0 in €.
We state the definition of the viscosity solution [CL],[CEL] of (1.9).

Definition 1.1: A function ¢(y) € C() is a subsolution of (1.9) provided that for all ¢» € C1(Q),

if ¢ — 1 attains a (local) maximum at y € €2, then

F(y,¢(y), Di(y)) < 0.

A function ¢(y) € C(Q)is is a suppersolution of (1.9), if ¢ — 1) attains a (local) minimum at y € €,
then

F(y,(y), Di(y)) > 0.

A function ¢ € C'(Q) is a viscosity solution of (1.1) if it is supper and sub solution of (1.9).

2 Stationary Problem

In this section we consider the stationary equation (1.2)
w+ H(z,u,uy) =0 in R".

We assume that H is continuous and that there exists constants ag, a1 < 0 and ag, a3 > 0 and a
function @ € C'(R™)™ such that

(2.1)  H(w,0,q)= H(z,u,p) < ao(u—v)+ (a(z),p—q) + (as + az(cr + c27)) [p = 4
for all # € B,, u > v, and |p|, |q| < (¢1 + ca 1), where (a(z),z) < ay |z|? for z € R™.

u(z
¢+ [zf?

First, we note that if u € ¥, ., then for each ¢ > 0 is Lipschitz continuous in z. In

fact, we have

u(z) u(y)

etz e[yl

(2.2)
[u(z) —u(y)] | Ju@)] 2]+ ]
< r—y| < M|z -
STl e et s A
c1 + c9s 25
for some M > 0 such that (14 ) < M for s € RT.

c+ s? c+ s?
Theorem 2.1 Assume that u ,v € ¥ .,, u is a subsolution of v+ H(z,u,u;) = f(z) and v is a
supersolution of v+ H(x,v,v,) = g(x). For § >0 let

1
c+ |w]2te

() =
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Then, for any ¢ > 0 there exists a constant ¢ > 0 (depends on ¢ and cyaz + a3) such that for ¢ > ¢
(1—ao— (2+6) max(0, a1 + cza2) —¢) sup P(u— )" <sup o(f —g)".
R" R"
Proof: It follows from (2.2) that if u, v € ¥, ., then

(2.3) lim ¢(z)u(z)= lm P(z)v(z)=0.

We choose a function § € C*°(R") satisfying
(2.4) 0<B<1, B0)=1, Bz)=0if |z > 1.

Let
M = max (sup ¥(a)]u(x)],sup v(a)|o(x)]).
Rn Rn

Define the function ® : R™ x R™ — R by

(2.5) (z,y) = P(x)u(z) — V(y)o(y) + 3MB(z — y)
where
(2.6) Be(x) = ﬁ(%) for z € R".

Off the support of f.(z — y), ® < 2M, while if |z| + |y| — oo on this support, then |z|, |y| —

and thus from (2.3) lim ;|4 }y|—cc ® < 3M. We may assume that u(z) —v(z) > 0 for some z. Then,

O(z,7) = P(@)(u(z) — v(z))+ 3M [.(0) > 3M.

Hence @ attains its maximum value at some point (zg,y0) € R™ x R". Moreover, |zq — yo| < €

since f.(xg — yo) > 0. Now we let 29 be a maximum point of

P(yo)v(yo) — 3MBc(x — yo) + P(xo, yo))
P(z) '

olo) (ute) -

Since 1 > 0 and
¥Y(Yo)v(yo) — 3M Be(xo — yo) + (w0, y0) = ¥(o)u(wo),

the function

P(y0)v(yo) — 3M Be(@ — yo) + (0, %0)
P(z)

attains a maximum 0 at zg. Since w is a subsolution, thus

d(xo)(u(o) + H (2o, u(20), p)) < ®(20) f(20)-

3MB(xo — yo)
Qﬁ(%)

r— u(x)—

(2.7)
with p = (24 8)(zo)uleo) ol 2o -



where we used the fact that (|z|>*%)" = (2 + §)|z|°2. Moreover, since u € X, .,

(2.8) p| < e1 4 ez |wol.

Similarly, the function

Y(o)u(ro) + 3M Be(r0 — y) — ®(20, Yo)
¥(y)

attains a minimum 0 at yo and since v is a super solution

¥(yo)(v(yo) + H (o, v(Yo0)s ¢)) > ¥(y0)g(yo)

3MBL(xo — yo)
¥(Yo)

y— v(y) -

(2.9)
with ¢ = (2 + 8)¥(yo)v(yo)|yol® yo —

where |¢| < ¢1 + ¢2|yo|. Thus by (2.7) and (2.9) we have
d(zo)u(zo) = (yo)v(yo)

(2.10)
< (o) H (Yo, v(Yo). q) — Y(x0)H (zo, u(x0), p) + ¥(x0) f(20) — ¥(¥0)9(y0)

Since ®(z9,y0) > ®(Z,Z), we have
P(@o)ulzo) = ¥(yo)v(yo) 2 Y(@)(u(z) = v(2)) +3M (1 = Se(zo = yo))
and thus

(4(20) = P(yo)) u(zo) + ¥ (yo)(u(zo) — v(yo)) = b(2)(w(®) — v(2)) + 3M (1 = Se(x0 = yo))-

Since

Zo 146 o 146
|(¥(20) — ¥(yo)) ulzo)| < Qp(gco)|u(960)|(2‘|‘5)(| 110+ Jyol' )

(2.11) ¢+ [yo[2H? 70 = 3ol

< const|zg — yol,

it follows that u(xzg) > v(yo) for sufficiently small € > 0. Note that
V(o) H (Yo, v(90), 4) — ¥(20)H (2o, u(w0), p) = (¥(y0) — ¥(w0))H (w0, u(20), p)

+0(y0)(H (yo, u(wo), p) = H (2o, (o), p)) + ¥(y0)(H (90, v(y0), 4) = H (Y0, u(20),p))-

From (2.1) and (2.10) we have that
b(zo)u(o) = U(yo)v(yo) — (¥(2o) f(z0) = ¥ (40)g(y0))

< O(e) + ¥(yo)(ao(u(zo) = v(y0)) + (alyo), p = ¢) + (az + as(er + e2r))|p — )

6



and from (2.11)
b(zo)u(zo) = Y(yo)v(yo) — (¥(wo) f(z0) = ¥(y0)9(y0))
(2.12) < O(e) + ao($(zo)ulzo) = ¥(y0)v(y0))

+9¥(yo)((a(Yo),p — q) + (a3 + ag(er + e27))|p — q])

where r = max{|zo|, |yo|} and O(¢) — 0 as € — 0. Now we evaluate p — ¢, i.e.,

p—q=(2+8)(w(wo)u(za) — ¥ (y0)v(y0))|v0l” 4o

+(2 + 8)(wo)u(wo)(|wol w0 — |yol yo) + 3M BL(xo — yo) (J2ol*T° — |yo]* ).

Since S
|20/ (¢ + |0]?)
¢ + |zo| 2

u(wo)
¢+ |zol?

for some My > 0, it follows from (2.8) that

|[(z0)u(zo)|zol® zo| < |zo| < My |20

|BL(20 = yo)(e + |20 < Mz (1 +|xo])
for some My > 0. Thus,

7‘1"'5(1 +7)

[3MBi(wo = yo) (Jol*** — Jyol**)] < 3(2 + )M Mo ———5—

|zo — vol,
and therefore
(24 6)t(2o)ulzo)(|zol"z0 — lyol o) + 3M (o — yo) (|2o*** — |yol***) = O(e).
Thus, in the right-hand side of (2.12) we have
P(yo)((alyo),p — a) + (as + az(e1 + e2r)) [p— q)

a1 |3/0|2+5 + (as + azx(c1 + 02|3/0|))|3/0|1+6
¢+ |yo|?F0

<O(e)+ (24 6) (¢(2o)u(zo) — P(y0)v(Y0))-

Hence from (2.12) we conclude

(2.13) wyo (P(zo)u(zo) = ¥(yo)v(yo)) < ¥(x0)f(2o) = ¥(y0)9(yo) + Ofe)

where
a1 |3/0|2+5 + (as + azx(c1 + 02|3/0|))|3/0|1+6

¢+ [yol+?

For any ¢ > 0 there exists a constant ¢ = ¢(¢, craz + as) > 0 such that for ¢ > ¢

Wy =1 —ag—(2406)

Wy Sw=1—ap— (24 6) max(0,a1 4 caz) — ¢

7



and thus
(2.14) w (P(zo)u(wo) — P(yo)v(yo)) < ¥(x0)f(z0) — ¥(¥0)g(yo) + O(e).
Assume that w > 0. For x € R" we have

P(z)(u(z) = v(z))+3M = (2, 2) < ®(z0,¥0) < P(z0)u(z0) — Y(Yo)v(yo) + 3M

and so by (2.14)

w sup ) (u(z)—v(x)™ < w(@(zo)u(zo) — ¥(yo)v(y0)) < ¥(2o)f(x0) — P(yo)g(yo) + O(e)
< sup O(f = 9)t + [¥(z0)g(zo) — Y(¥0)g(yo)| + O(e)
< sup v(f - 9)T + wygle) + O(e)

where wy,y(+) is the modulus of continuity of ¢»g. Now the claim follows by letting ¢ — 0. O
Letting 6 — 0T we obtain the following theorem.

Theorem 2.2 Assume that u, v € ¥ .,, u is a subsolution of v+ H(z,u,u;) = f(z) and v is a
supersolution of v+ H(z,v,v,) = g(x). Then, for any ¢ > 0 there exists a constant ¢ > 0 (depends
on ¢ and craz + as) such that for ¢ > ¢
(u—o)* (-9
1—ag—2 0 —£ —— < _
(1 —ap max(0,a; + czaz) —€) 511315) T eE S 511215) T
Proof: It suffices to prove that

u u
o =3P c—|—|x|2+5_>811317? c+ |z|?

=17
as 6§ — 07 for u € C(R"™). Since ns < 7, it follows that limns, = 5 < 5 for all convergent
subsequence 7s,. Suppose n — 77 = € > 0. Then there exists a & € R™ such that
u(7)
c+[z]?

DN ™

77_

Since @) @)
u(z u(z
0n +
cH e e B

N5, 2
we obtain 7 > n — £, which contradicts the assumption. Thus, 7 = 5 and lim 7s = 5. O

If w,ve X, ., are viscosity solutions to u + H(z,u,u;) = f(z) and v + H(z,v,v;) = g(2),

respectively, then it follows from Theorem 2.2 that

w sup 7|u—v| < sup |f—g|
rrn c+|x|2 T gr e+ |x|?
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In particular this implies the uniqueness of viscosity solutions to (1.2) in the class X, ,.

In order to apply Theorem 2.2 we must have 1 —ag > 0. But we have 1 —ag = 0 for the example
in Introduction and thus we cannot apply the theorem directly to prove that V= (z) is the unique
solution in the class Y. The following corollary utilizes the fact that if a; < 0 then a1 + ascq can
be negative to extend the theorem to solutions in the class ¥g.,. As a consequence we can show

our claim for the example in Introduction.

Corollary 2.3 Assume that u, v € Yo, (i.e., ¢4 =0), u is a subsolution of u+ H(z,u,u;) =0
and v is a supersolution of v+ H(x,v,v,) = 0. Suppose that ¢; = 0 and as = 0 in (2.1) and the

functions

(2.15) ue) o) f@) o g(@)

227 e fe? |z[?

are continuous at x = 0 (consequently, u(0) = v(0) = f(0) = g(0) = 0). Then, we have

(u—ov)* (f—g)"
1—ag—2(ay + coa sup ———— < sup ———.
B T e

Proof: In the proof of Theorem 2.1 we set @ such that

1
Y= T P

where an increasing function ¢ € C1(R) satisfies
g(s)=s if s<1 and ¢(s)= |5|1+% if s> 2.

Then, by the assumption
M = max{sup b.(o)futo)].sup v(o)]olo)])

is bounded uniformly in € > 0 and ® is continuous. Let (z.,y.) € R" X R™ be a maximizing point

of ®. Using exactly the same arguments as in the proof of Theorem 2.1 we have

wye (Ve(z)u(ze) = Ye(ye)v(ye)) < Pe(we) f(2e) = Ye(ye)g(ye) + O(€)

where

2/ 52 62
wy, = 1 o — (a1 + azc2) 7' (|ye*)lye|

Vet a(lyl*)

Letting € — 0T, we obtain

where




and then letting § — 0T we obtain the desired estimate. O

Now, let us apply the corollary to the example in Introduction. For the example ¢4 = 0, a3 = 0,
and 1 —ag=0,a; = —1 and ay = W% Thus if ¢ < 42, then w = 1 — ag — 2(1 — agcz) > 0. Hence
it follows from Corollary 2.3 that V= (z) is the unique solution in the class ¥ = X, ., satisfying
(2.15).

3 Cauchy Problem

Next we consider the Cauchy problem (1.1)
we+ H(tz,u,u,) =0, u(0,2) = up(x)

in 2 =1[0,7) x R". We assume that H is continuous and that there exists constants ag, a3 < 0 and
az > 0 and a function ¢ € C'(R")" such that

(3.1) H(t,z,v,q)— H(t,z,u,p) < ag(u—v)+ (a(z),p—q)+ (a3 + az(c1 + c27)) [p— ¢

for all t € [0,7], 2 € B,, u > v, and |p|, |¢| < (c1 + c27), where (a(z),z) < aq|z|? .

Theorem 3.1 Assume that u, v € X, .,, u is a subsolution of uy + H(t,z,u,u,;) = f and v is a

supersolution of v, + H(t,x,v,v,) = g. For 6 > 0 let

1
c+ |z|2te

() =

Then, for any ¢ > 0 there exists a constant ¢ > 0 (depends on ¢ and cray + as) such that for ¢ > ¢

sup ¥(a)(u(t, ) — v(t,2))t < e sup G(ug — vo)t + / L9 sup p(f(s, ) — g(s,2))* ds
Rn R™ 0

where w = ag + (24 ¢) max(0, a1 + c2az) + €.

Proof: For w and ¢ > 0 define

We assume that

(3.2) 6_”5811%13 Y(@)(u(t,x) = o(t,2))" = sup (w)(uo(x) — vo(x))" = F(f) = a >0

Rn
Then there exists an z € R™ such that
. _ _ _ «a
(3.3) (@l ) = o8, 2)) = sup vl) (wol) = ole)) — F(0) > §

10



We choose a function § € C™(R x R"™) satisfying
0<B <L, B0,0)=1, Blte) =0 if > +[ef* > 1.

Let m = maxyg[ ;] maxzepn max(Y(z)|u(t, z)|,¥(z)v(t,z)[). For A > 0 define the function & :
R™ x R" x [0,7] x [0,7] — R by

®(2,y,1,8) = e "p(x)ult, 2) — e P(y)v(s,y) — At + 5)
(3.4) 1
LR+ F() + MB (= 5.2 )
where M = 5m + 2A7 + F(7) and

t
Belt.x) = B~ %) for (t,2) € R x R".
Off the support of 5.(t — s,z —y), ® < 2m, while if |z|+|y| — oo on this support, then |z|, |y| —
and thus from (2.3) lim 4|y —0c ® < M. From (3.3)

(2,2, 1,1) = e () (u(t, &) — v(t,z)) — F(1) —2Xt+ M > M

provided that 4A\7 < a. Thus, if (20, Yo, fo, So) attains the maximum of ® then zq, yo € R". We
next claim that if A\, € > 0 are sufficiently small then t5, sg > p for some p > 0 independent of

A, €. To prove this, we note that
b(z,y,t,5)<2m if |z — y|2 + - 8|2 > ¢

and

sup & > sup ®(z,z,7,7)> 3m.
rER™

Thus, |20 — yol* + [to — so|* < €* and

®(20, 90, t0,50) < eT0(wo)(u(to, T0) — v(to, x0)) + M + wa(e)

< W(@o)(w(0,20) — v(0,20)) + M + wi(to) + wallo) + wa(e)
where wy(+), wz(+) are the modulus of continuity of e=“ ¢ (z)u(t,x) and e~“*¢(y)v(s,y) on B, x
[0, 7]. Since on the other hand we have from (3.3)

®(z,z,t,t) > sup Y(u(0,2)— v(0,2))+ % + M —2)t
Rn

we have that
«a
wl(to) + WQ(to) + WQ(€) Z 5 —2A\T.

Now, if we choose ¢ > 0 such that wy(e) < §, A > 0 such that 2A7 < ¢ and p > 0 such that
wi(o) +wao) < § for 0 < o < p, then we conclude that tg > p. Similarly, we obtain so > p and

thus the claim is proved.

11



Hence & attains its maximum value at some point (g, yo,%0,50) € R** x (0,7]>. Moreover,

|20 — yol|? + [to — s0|? < €2. Now (g, 7o) is a maximum point of

e Mp(a) (u(t, x) — ¢(t,z))
where

e™*01p(yo)v(s0, y0) + AL+ s0) + 5(F(1) + F(s0)) — MB(t — so,x — yo) + ®(x0, Yo, Lo, 50)
e~wip(z)

and since e”“"¢p > 0 the function (¢,2) — u(t,z) — ¢(¢,2) attains a maximum 0 at (g, zg). Since

¢t, ) =

2 is a subsolution

A+ $F'(to) — MDyBe(to — xo, w0 — Yo)
e—wt0¢($0)

(3.5) +H (to, z0, u(to, z0),p)) < f(to,20)

wu(to, zo) +

MD,B(to — zo,z0 — Yo)
e—wt0¢($0)

where we used the fact that ¢(tg, z0) = u(to, z¢). Moreover since u € X, .,

with p = (2 + 8)¥(wo)ulto, xo)|xo|® o —

(3.6) Ip| < e+ e |20l
Similarly, the function

e Pap(xo)ulto, x0) — Mo + s) = 3(F(to) + F(s)) + MBc(to — 5,20 — y) = (0, Yo, o, 50)
e—wslb(y)

attains a minimum 0 at (sg, o) and since v is a super solution

(s,y) — v(s,y)—

A+ 2F'(s0) + MDyBe(to — S0, 0 — Yo)
e~%0(yo)

(3.7) +H (50, Y0, v(50, %0),9)) > 9(50, ¥o)

w (S0, Yo) —

MD,B(to — s0, 0 — Yo)
e=wso1h(yo)

with ¢ = (2 4 &)¥ (0, ¥0)v(50, ¥0)|90|® Yo —

where |¢| < ¢1 + ¢z |2o|. Thus by (3.5) and (3.7) we have
w (em¥Pap(xo)u(to, o) — €71 (50, y0)v(50. 0)) + 2A + 5 (F'(t0) + F'(s0))

(3.8) < e (yo) H (50, Yo, v(50,Y0)» 4) — €~ ¢ (o) H (to, 2o, ulto, x0), p)

+e™ P p(20) f(to, xo) — €~ 1b(y0)g (S0, Yo)-
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Since ®(zg, yo, to, s0) > ®(z,z,1,1)
(e7“4(xg) — ™0 4h(yo)) ulto, x0) + €~ ¥ (yo)(u(to, z0) — v(s0,%0))

> e (@) (u(l, @) — o1, 7)) + M (1 = Be(to = s0, 0 — o)) — F(1) = 2A1,

it thus follows from (2.11) and (3.3) that u(to,z0) > v(so,yo) for sufficiently small ¢ > 0, A > 0.
From (3.1) and (3.8) and by the arguments leading to the estimate (2.12), we have

w (e=“p(xo)u(to, xo) — €79 (y0)v (S0, Yo))
+2A + % (F'(to) + F'(s0)) — (e7“" 4 (0) f(to, 20) — €~“*° ¢ (y0)9(50, %0))

< 0(e) + ag(e " (xg)u(to, z0) — €~ (yo)v(s0, ¥0))

FTU (o) (aly0),p — 0) +az (1 +en+ ear)lp— al)

where r = max{|zo|, |yo|}. Hence using exactly the same arguments as those in the proof of Theorem
2.1, it follows from the expression of p, ¢ in (3.5) and (3.7), respectively that for any € > 0 there

exists a constant ¢ > 0 (depends on ¢ and ¢yay + a3) such that for ¢ > ¢
e=*0(yo)((a(yo),p — ¢) + az (1 + 1 + ear)lp — q])

< 0(e) + ((2 4 6) max(0, a1 + cgaz) + ) (e7“" ¢ (x0)u(to, o) — €™ ¥(yo)v(s0,%0))-
Now, from (3.9) we obtain

2A < O(e) + e~ (o) f(to, xo) — €™ 1(yo)g(to, z0)

(3.10) )
=5 (70 sup ¥(f(to, ) = glto, )" + €7 sup $(f(s0,-)) = g(s0,-))")
R R

where we chose w = ag + (24 6) max(0,ay + caaz) + . By letting ¢ — 0 in (3.10) we obtain A <0

which contradicts the assumption. Thus, the assumption (3.2) is false and therefore

e~ sup ¢(a)(u(t,a) = o(t,2))* < sup ¥()(uolx) - vo(x))* + F(1)
R" R"

on [0,7]. O
Letting 6 — 0T we obtain the following theorem.

Theorem 3.2 Assume that u, v € X, .,, u is a subsolution of uy + H(t,z,u,u;) = f and v is a
supersolution of v, + H(t,x,v,v,) = g. Then, for any ¢ > 0 there exists a constant ¢ > 0 (depends

on ¢ and craz + as) such that for ¢ > ¢

(u(t,x)—v(t,x))"’ i (UO_ ?Jo)+ /t (t—s) (f(8,$)—g(8,$))+
< w w S d
S}gly? ¢+ |x|? =€ S}ger ¢+ |x|? + 0 ¢ S}ger ¢+ |x|?

S
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where w = ag + 2 max(0, a1 + czaz) + €.

If w,v e X, are viscosity solutions to u; + H(t,z,u,u;) = f and v + H(t,z,v,v,) = g,

respectively, then it follows from Theorem 3.2 that

|UO_UO| _I_/tew(t—s) |f(87$)_g(87$)|d8.
0

lu(t, @) —v(t, @) ¢
su < e“'su
Rf ¢+ |x|? - Rr? ¢+ |x|?

S}gly? ¢+ |x|?

This implies the uniqueness of viscosity solutions to (1.3) in the class Y., .,. Moreover, we have

the following corollary.

Corollary 3.3 Assume that u, v € ¥, .,, u is a subsolution of u; + H(t,z,u,u;) = f and v is a

supersolution of v, + H(t,x,v,v,) = g. Suppose that c1 =0 and az = 0 in (3.1) and the functions

u(t,z) w(t,z) f(t,x) and g(t,x)

N N E |z[?

are continuous at x = 0 (consequently, u(0) = v(0) = f(0) = g(0) = 0). Then, we have

_ + o+ ” _ +
sup (u(t, ) ?21(%90)) < eLsup (uo :0) w(t—s) (f(s,x) 2(8790)) J
R || R || 0 R7 ||

3
where w = ag + 2 (a1 + czaz).
References

[BFN] A.Bensoussan, J.Frehse and H.Nagai, Some Results on risk-sensitive control with full obser-
vation, Applied Math. and Optim., (1998), 1-41.

[CEL] M.G.Crandall, L.C.Evans and P.L.Lions, Some properties of viscosity solutions of Hamilton-
Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), 487-502.

[CIL] M.G.Crandall, H.Ishii and P.L.Lions, Uniqueness of viscosity solutions of Hamilton-Jacobi
equations revisited, J. Math. Soc. Japan, 39 (1987), 581-595.

[CL] M.G.Crandall and P.L.Lions, Viscosity solutions of Hamilton-Jacobi equations, Tras. Amer.
Math. Soc., 277 (1983), 1-42.

[F'S] W.H.Fleming and H.M.Soner, Controlled Markov Process and Viscosity Solutions, Springer-
Verlag, 1992.

[Is] H.Ishii, Uniqueness of unbounded viscosity solution of Hamilton-Jacobi equations, India
Univ., Math J., 33 (1984), 721-748.

[It] K.Ito, Existence of solutions to Hamilton-Jacobi-Bellman equation under quadratic growth

conditions, submitted.

14



[Mc] W.M.McEneaney, Uniqueness for viscosity solutions of nonstationary Hamilton-Jacobi-Bellman
equation under some a priori conditions (with application), SIAM J. Control & Optim., 33
(1995), 1560-1576.

[MI] W.M.McEneaney and K.Ito, Infinite time—horizon risk sensitive systems with quadratic growth,
Proc. 36th IEEE Conf. on Decision and Control (1997), 1088-1093.

15



